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Lecture 25a: Approximate inference in BNs
Direct sampling methods
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Where are we?

Last time . . .

Inference in Bayesian Networks
Exact methods: enumeration, variable elimination algorithm
Computationally intractable in the worst case

Today . . .

Approximate Inference in Bayesian Networks
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Approximate inference in BNs

Exact inference computationally very hard
Approximate methods important, here randomised sampling
algorithms
Monte Carlo algorithms
We will talk about two types of MC algorithms:

1 Direct sampling methods (today)
2 Markov chain sampling (next time)
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Direct sampling methods

Basic idea: generate samples from a known probability
distribution
Consider an unbiased coin as a random variable – sampling
from the distribution is like flipping the coin
It is possible to sample any distribution on a single variable
given a set of random numbers from [0,1]
Simplest method: generate events from network without
evidence

Sample each variable in ‘topological order’
Probability distribution for sampled value is conditioned on
values assigned to parents
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Example

Consider the following BN and ordering
[Cloudy ,Sprinkler ,Rain,WetGrass]:
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Example

Direct sampling process:
Sample from P(Cloudy) = 〈0.5,0.5〉, suppose this returns true
Sample from P(Sprinkler |Cloudy = true) = 〈0.1,0.9〉, suppose
this returns false
Sample from P(Rain|Cloudy = true) = 〈0.8,0.2〉,
suppose this returns true
Sample from
P(WetGrass|Sprinkler = false,Rain = true) = 〈0.9,0.1〉,
suppose this returns true

Event returned=[true, false, true, true]
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Direct sampling methods

Generates samples with probability S(x1, . . . ,xn)

S(x1, . . . ,xn) = P(x1, . . . ,xn) =
n

∏
i=1

P(xi |parents(Xi ))

i.e. in accordance with the distribution
Answers are computed by counting the number N(x1, . . . ,xn)
of the times event x1, . . . ,xn was generated and dividing by
total number N of all samples
In the limit, we should get

lim
n→∞

N(x1, . . . ,xn)

N
= S(x1, . . . ,xn) = P(x1, . . . ,xn)

If the estimated probability P̂ becomes exact in the limit we
call the estimate consistent and we write “≈” in this sense,
e.g.

P(x1, . . . ,xn)≈ N(x1, . . . ,xn)/N
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Rejection sampling

Purpose: to produce samples for hard-to-sample distribution
from easy-to-sample distribution
To determine P(X |e) generate samples from the prior
distribution specified by the BN first
Then reject those that do not match the evidence
The estimate P̂(X = x |e) is obtained by counting how often
X = x occurs in the remaining samples
Rejection sampling is consistent because, by definition:

P̂(X |e) = N(X ,e)
N(e)

≈ P(X ,e)
P(e)

= P(X |e)
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Back to our example

Assume we want to estimate P(Rain|Sprinkler = true), using
100 samples

73 have Sprinkler = false (rejected), 27 have Sprinkler = true
Of these 27, 8 have Rain = true and 19 have Rain = false

P(Rain|Sprinkler = true)≈ α〈8,19〉= 〈0.296,0.704〉
True answer would be 〈0.3,0.7〉
But the procedure rejects too many samples that are not
consistent with e (exponential in number of variables)
Not really usable (similar to naively estimating conditional
probabilities from observation)
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Summary

Approximate inference in BNs
Direct sampling
rejection sampling

Can answer query of the form P(X |e)
But wasteful. . .

Next time: likelihood weighting and MCMC

Alex Lascarides Informatics 2D 10 / 10


	Introduction
	Direct sampling methods
	Rejection sampling

	Summary

