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Time and uncertainty
Inference in temporal models

Summary

Where are we?

Last time . . .

Completed our account of Bayesian Networks
Dealt with methods for exact and approximate inference in
BNs
Enumeration, variable elimination, sampling, MCMC

Today . . .

Time and uncertainty I
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Time and uncertainty

So far we have only seen methods for describing uncertainty in
static environments
Every variable had a fixed value, we assumed that nothing
changes during evidence collection or diagnosis
Many practical domains involve uncertainty about processes
that can be modelled with probabilistic methods
Basic idea straightforward: imagine one BN model of the
problem for every time step and reason about changes between
them
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States and observations

Adopted approach similar to situation calculus: series of
snapshots (time slices) will be used to describe process of
change
Snapshots consist of observable random variables Et and
non-observable ones Xt

For simplicity, we assume sets of (non)observable variables
remain constant over time, but this is not necessary
Observation at t will be Et = et for some set of values et
Assume that states start at t = 0 and evidence starts arriving
at t = 1
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States and observations

Example: underground security guard wants to predict whether
it is raining but only observes every morning whether director
comes in carrying umbrella
For each day, Et contains variable Ut (whether the umbrella
appears) and Xt contains state variable Rt (whether it’s
raining)
Evidence U1,U2, . . ., state variables R0,R1, . . .

Use notation a : b to denote sequences of integers,
e.g. U1,U2,U3 = U1:3
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Stationary processes and the Markov assumption

How do we specify dependencies among variables?
Natural to arrange them in temporal order (causes usually
precede effects)
Problem: set of variables is unbounded (one for each time
slice), so we would have to

specify unbounded number of conditional probability tables
specify an unbounded number of parents for each of these

Solution to first problem: we assume that changes are caused
by a stationary process – the laws that govern change do not
change over time (not to be confused with “static”)
For example, P(Ut |Parents(Ut)) does not depend on t

Alex Lascarides Informatics 2D 6 / 19



Time and uncertainty
Inference in temporal models

Summary

States and observations
Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

Solution to second problem: Markov assumption – the
current state only depends on a finite history of previous states
Such processes are called Markov processes or Markov chains
Simplest form: first-order Markov processes, every state
depends only on predecessor state
We can write this as P(Xt |X0:t−1) = P(Xt |Xt−1)

This conditional distribution is called transition model
Difference between first-order and second-order Markov
processes:
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Stationary processes and the Markov assumption

Assume that evidence variables are conditionally independent
of other stuff given the current state:

P(Et |X0:t ,E0:t−1) = P(Et |Xt)

This is called the sensor model (observation model) of the
system
Notice direction of dependence: state causes evidence (but
inference goes in other direction!)
In umbrella world, rain causes umbrella to appear
Finally, we need a prior distribution over initial states P(X0)

These three distributions give a specification of the complete
JPD:

P(X0,X1, . . . ,Xt ,E1, . . . ,Et) = P(X0)
t

∏
i=1

P(Xi |Xi−1)P(Ei |Xi )
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Umbrella world example

Bayesian network structure and conditional distributions
Transition model P(Raint |Raint−1), sensor model
P(Umbrellat |Raint)

Rain depends only on rainfall on previous day, whether this is
reasonable depends on domain!
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Stationary processes and the Markov assumption

If Markov assumptions seems too simplistic for some domains
(and hence, inaccurate), two measures can be taken

We can increase the order of the Markov process model
We can increase the set of state variables

For example, add information about season, pressure or
humidity
But this will also increase prediction requirements (problem
alleviated if we add new sensors)
Example: dependency of predicting movement of robot on
battery power level

add battery level sensor
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Summary

Inference tasks in temporal models

Now that we have described general model, we need inference
methods for a number of tasks
Filtering/monitoring: compute belief state given evidence
to date, i.e. P(Xt |e1:t)
Interestingly, an almost identical calculation yields the
likelihood of the evidence sequence P(e1:t)
Prediction: computing posterior distribution over a future
state given evidence to date: P(Xt+k |e1:t)
Smoothing/hindsight: compute posterior distribution of past
state, P(Xk |e1:t), 0≤ k < t
Most likely explanation: compute argmaxx1:t P(x1:t |e1:t)
i.e. the most likely sequence of states given evidence
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Filtering and prediction

Done by recursive estimation: compute result for t +1 by
doing it for t and then updating with new evidence et+1. That
is, for some function f :

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t))
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Why recursion works

P(Xt+1|e1:t+1) = P(Xt+1|e1:t ,et+1) (split notation)
= αP(Xt+1,e1:t ,et+1) (Bayes)
= αP(et+1|Xt+1,e1:t)P(Xt+1,e1:t) (Bayes)
= α

′P(et+1|Xt+1,e1:t)P(Xt+1|e1:t) (Bayes)
= α

′P(et+1|Xt+1)P(Xt+1|e1:t) (Markov)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1,xt |e1:t) (marginalisation)

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1,xt ,e1:t)

P(e1:t)
(Bayes)

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1|xt ,e1:t)P(xt ,e1:t)

P(e1:t)
(Bayes)
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Derivation continued. . .

P(Xt+1|e1:t+1) =

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1|xt ,e1:t)P(xt ,e1:t)

P(e1:t)
(last slide!)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1|xt ,e1:t)P(xt |e1:t) (Bayes)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1|xt)P(xt |e1:t) (Markov)

P(et+1|Xt+1) is sensor model; P(Xt+1|xt) is transition model,
P(xt |e1:t) is recursive bit.
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Filtering and prediction

We can view estimate P(Xt |e1:t) as “message” f1:t propagated
and updated through sequence
We write this process as f1:t+1 = αForward(f1:t ,et+1)

Time and space requirements for this are constant regardless
of length of sequence
This is extremely important for agent design!
All this is very abstract, let’s look at an example
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Example Compute P(R2|u1:2), U1 = true, U2 = true

Suppose P(R0) = 〈0.5,0.5〉
Recursive equations:

P(R2|u1,u2) = αP(u2|R2)∑r1 P(R2|r1)P(r1|u1)

P(R1|u1) = α ′P(u1|R1)∑r0 P(R1|r0)P(r0)
= α ′〈0.9,0.2〉(〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5)
= α ′〈0.9,0.2〉〈0.5,0.5〉
= 〈0.818,0.182〉

P(R2|u1,u2) = α〈0.9,0.2〉(〈0.7,0.3〉×0.818+ 〈0.3,0.7〉×0.182)
= α〈0.9,0.2〉〈0.627,0.373〉
= α〈0.565,0.075〉
= 〈0.883,0.117〉
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Filtering and prediction

Prediction works like filtering without new evidence
Computation involves only transition model and not sensor
model:

P(Xt+k+1|e1:t) = ∑
xt+k

P(Xt+k+1|xt+k)P(xt+k |e1:t)

As we predict further and further into the future, distribution
of rain converges to 〈0.5,0.5〉
This is called the stationary distribution of the Markov
process (the more uncertainty, the quicker it will converge)
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Filtering and prediction

We can use the above method to compute likelihood of
evidence sequence P(e1:t)
Useful to compare different temporal models
Use a likelihood message l1:t = P(Xt ,e1:t) and compute

l1:t+1 = αForward(l1:t ,et+1)

Once we compute l1:t , summing out yields likelihood

L1:t = P(e1:t) = ∑
xt

l1:t(xt ,e1:t)
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Summary

Time and uncertainty (states and observations)
Stationarity and Markov assumptions
Inference in temporal models
Filtering and prediction
Next time: Time and Uncertainty II
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