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Where are we?

Last time ...
o Completed our account of Bayesian Networks

o Dealt with methods for exact and approximate inference in
BNs

@ Enumeration, variable elimination, sampling, MCMC
Today ...

e Time and uncertainty |
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Time and uncertaint; .
4 States and observations

Stationary processes and the Markov assumption

Time and uncertainty

@ So far we have only seen methods for describing uncertainty in
static environments

o Every variable had a fixed value, we assumed that nothing
changes during evidence collection or diagnosis

@ Many practical domains involve uncertainty about processes
that can be modelled with probabilistic methods

o Basic idea straightforward: imagine one BN model of the

problem for every time step and reason about changes between
them
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Time and uncertainty States and observations

Stationary processes and the Markov assumption

States and observations

Adopted approach similar to situation calculus: series of
snapshots (time slices) will be used to describe process of
change

@ Snapshots consist of observable random variables E; and
non-observable ones X;

o For simplicity, we assume sets of (non)observable variables
remain constant over time, but this is not necessary

@ Observation at t will be E; = e; for some set of values e;

@ Assume that states start at t =0 and evidence starts arriving
att=1
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Time and uncertainty States and observations

Stationary processes and the Markov assumption

States and observations

o Example: underground security guard wants to predict whether
it is raining but only observes every morning whether director
comes in carrying umbrella

e For each day, E; contains variable U; (whether the umbrella
appears) and X; contains state variable R; (whether it's
raining)

e Evidence Uy, Uy, ..., state variables Ry, Ry, ...

@ Use notation a: b to denote sequences of integers,
€.g. Ul7 U27 U3 = Ul:3
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Time and uncertaint; ]
4 States and observations

Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

@ How do we specify dependencies among variables?
o Natural to arrange them in temporal order (causes usually
precede effects)

@ Problem: set of variables is unbounded (one for each time
slice), so we would have to

o specify unbounded number of conditional probability tables
o specify an unbounded number of parents for each of these

@ Solution to first problem: we assume that changes are caused
by a stationary process — the laws that govern change do not
change over time (not to be confused with “static”)

o For example, P(U¢|Parents(U;)) does not depend on t
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Time and uncertaint; ]
4 States and observations

Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

@ Solution to second problem: Markov assumption — the
current state only depends on a finite history of previous states

@ Such processes are called Markov processes or Markov chains

@ Simplest form: first-order Markov processes, every state
depends only on predecessor state

@ We can write this as P(X¢|Xo.t—1) = P(X¢|X¢-1)
@ This conditional distribution is called transition model

o Difference between first-order and second-order Markov
processes:

(a) @@@@@
R e S e S I e

Alex Lascarides Informatics 2D 7/19



Time and uncertaint; ]
4 States and observations

Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

@ Assume that evidence variables are conditionally independent
of other stuff given the current state:

P(E¢|Xo:t,Eo:t—1) = P(E¢|X¢)

@ This is called the sensor model (observation model) of the
system

o Notice direction of dependence: state causes evidence (but
inference goes in other direction!)

@ In umbrella world, rain causes umbrella to appear

o Finally, we need a prior distribution over initial states P(Xg)

o These three distributions give a specification of the complete
JPD:

t
P(X07X17 XtaE17 7 HP X |Xl 1 P(E |X)
i=1
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Time and uncertaint; .
4 States and observations

Stationary processes and the Markov assumption

Umbrella world example

@ Bayesian network structure and conditional distributions

e Transition model P(Rain:|Rain;_1), sensor model
P(Umbrellas|Rain;)

Ry | PIR)
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r

. 02
Umbrella,

@ Rain depends only on rainfall on previous day, whether this is
reasonable depends on domain!
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Time and uncertaint; .
4 States and observations

Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

o If Markov assumptions seems too simplistic for some domains
(and hence, inaccurate), two measures can be taken

o We can increase the order of the Markov process model
o We can increase the set of state variables
@ For example, add information about season, pressure or
humidity
@ But this will also increase prediction requirements (problem
alleviated if we add new sensors)

o Example: dependency of predicting movement of robot on
battery power level

o add battery level sensor
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Inference in temporal models

Inference tasks in temporal models

@ Now that we have described general model, we need inference
methods for a number of tasks

e Filtering/monitoring: compute belief state given evidence
to date, i.e. P(X¢|e1:t)

o Interestingly, an almost identical calculation yields the
likelihood of the evidence sequence P(es.t)

o Prediction: computing posterior distribution over a future
state given evidence to date: P(X; k|e1:t)

e Smoothing/hindsight: compute posterior distribution of past
state, P(Xkle1t), 0 < k<t

o Most likely explanation: compute argmaxy,., P(x1:¢|e1.t)
i.e. the most likely sequence of states given evidence
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Inference in temporal models

Filtering and prediction

@ Done by recursive estimation: compute result for t+1 by
doing it for t and then updating with new evidence e; 1. That
is, for some function f:

P(Xet1lerer1) = f(er1,P(Xelerr))
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Inference in temporal models

Why recursion works

P(Xti1lere+1) = P(Xet1ler:e, €e41) (split notation)
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Inference in temporal models

Why recursion works

P(Xti1lere+1) = P(Xet1ler:e, €e41) (split notation)
= aP(X¢q1,€1:6,€041) (Bayes)
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Inference in temporal models

Why recursion works

P(Xti1lere+1) = P(Xet1ler:e, €e41) (split notation)
= oP(X¢11,€1:4,€641) (Bayes)
= aP(er1|Xer1 1.6 )P(Xet1,€1:0) (Bayes)
= a'P(etr1[Xes1,€1:6)P(Xepalere) (Bayes)
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Inference in temporal models
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P(Xt+laxt7e1:t)

=a'P(e X 2 Bayes
( ‘ 1| ‘ 1) Xt P(el:t) ( Y )
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= o'P(er1|Xe 1)2 (Xea e, €3:0) Plxe ee) (Bayes)

Xt P(elit)

Alex Lascarides Informatics 2D 13/19



Inference in temporal models

Derivation continued. . .

P(Xt+1|e1:t+1) =

P(Xt+1|Xt el:t)P(Xt el:t)
= o/'P(ec1X : ’
oPleenl t+1)x2; P(e1.t)

(last slide!)
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Inference in temporal models

Derivation continued. . .
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Inference in temporal models

Derivation continued. . .

P(Xt+1|e1:t+1) =
P(Xt+1 |Xt, el:t)P(Xta el:t)

=a'P X last slide!

o'P(est1] t+1)xzt, Plers) (last slide!)

= a/P(et+1|xt+1)ZP(xt+l|Xtue1:t)P(Xt|e1:t) (Bayes)
Xt

= a'P(ers1/Xe41) Y P(Xeqa [xe)P(xeer:e) (Markov)
Xt

@ P(ert1|X¢+1) is sensor model; P(X¢41|x¢) is transition model,
P(x¢|e1.t) is recursive bit.
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Inference in temporal models

Filtering and prediction

@ We can view estimate P(X¢|e1.+) as “message” f1.; propagated
and updated through sequence

(]

We write this process as f1.t11 = aForward(f1.+,e¢41)

@ Time and space requirements for this are constant regardless
of length of sequence

This is extremely important for agent design!

(]

All this is very abstract, let's look at an example
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Inference in temporal models

Compute P(Ro|u10), Uy = true, Uy = true

@ Suppose P(Rp) = (0.5,0.5)

@ Recursive equations:
P(R2|ur,u2) =  aP(uw2|R2) X, P(Ra|r)P(r1|u1)

P(Ri[u)

a'P(u1|R1) X, P(R1lro) P(ro)

— 0/(0.9,0.2)((0.7,0.3) x 0.5+ (0.3,0.7) x 0.5)
— &/(0.9,0.2)(0.5,0.5)

— (0.818,0.182)

P(Raluy,u2) = @(0.9,0.2)({0.7,0.3) x 0.818+ (0.3,0.7) x 0.182)
= (0.9,0.2)(0.627,0.373)
=  (0.565,0.075)
= (0.883,0.117)
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Inference in temporal models

Filtering and prediction

@ Prediction works like filtering without new evidence

o Computation involves only transition model and not sensor
model:

P(Xt+k+1|el:t) = Z P(Xt+k+1|Xt+k)P(Xt+k|e1:t)

Xt+k
@ As we predict further and further into the future, distribution
of rain converges to (0.5,0.5)

o This is called the stationary distribution of the Markov
process (the more uncertainty, the quicker it will converge)
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Inference in temporal models

Filtering and prediction

@ We can use the above method to compute likelihood of
evidence sequence P(ey.t)

o Useful to compare different temporal models

o Use a likelihood message l1.+ = P(X¢,e1.+) and compute
l1.t4+1 = aForward(l1.¢,e¢+1)

@ Once we compute l1.¢, summing out yields likelihood

Ll:t — P(el:t) — le:t(xtael:t)
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Summary

Time and uncertainty (states and observations)
Stationarity and Markov assumptions

Inference in temporal models

Filtering and prediction

Next time: Time and Uncertainty Il
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