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Lecture 26a: Time and Uncertainty:
Stationary Processes and the Markov Assumption
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Where are we?

So far...
o Completed our account of Bayesian Networks

o Dealt with methods for exact and approximate inference in
BNs

@ Enumeration, variable elimination, sampling, MCMC
Today ...

o Time and uncertainty |
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Time and uncertainty

@ So far we have only seen methods for describing uncertainty in
static environments

o Every variable had a fixed value, we assumed that nothing
changes during evidence collection or diagnosis

@ Many practical domains involve uncertainty about processes
that can be modelled with probabilistic methods

o Basic idea straightforward: imagine one BN model of the
problem for every time step and reason about changes between
them
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

States and observations

Adopted approach similar to situation calculus: series of
snapshots (time slices) will be used to describe process of
change

@ Snapshots consist of observable random variables E; and
non-observable ones X;

o For simplicity, we assume sets of (non)observable variables
remain constant over time, but this is not necessary

@ Observation at t will be E; = e; for some set of values e;

@ Assume that states start at t =0 and evidence starts arriving
att=1
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

States and observations

@ Example: underground security guard wants to predict whether
it is raining but only observes every morning whether director
comes in carrying umbrella

e For each day, E; contains variable U; (whether the umbrella
appears) and X; contains state variable R; (whether it's
raining)

o Evidence Uy, Us,..., state variables Ry, Ry,...

@ Use notation a: b to denote sequences of integers,
e.g. Ui,Up,Us = Ur:3
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

o How do we specify dependencies among variables?

o Natural to arrange them in temporal order (causes usually
precede effects)
@ Problem: set of variables is unbounded (one for each time
slice), so we would have to
o specify unbounded number of conditional probability tables
o specify an unbounded number of parents for each of these
@ Solution to first problem: we assume that changes are caused
by a stationary process — the laws that govern the process do
not change themselves over time (not to be confused with
“static”)

For example, P(U;|Parents(U;)) does not depend on t
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

@ Solution to second problem: Markov assumption — the
current state only depends on a finite history of previous states

@ Such processes are called Markov processes or Markov chains

@ Simplest form: first-order Markov processes, every state
depends only on predecessor state

o We can write this as P(X¢|Xo:t—1) = P(X¢|Xt-1)
o This conditional distribution is called transition model

o Difference between first-order and second-order Markov
processes:
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

@ Assume that evidence variables are conditionally independent
of other stuff given the current state:

P(Et|x0:ta EO:t—l) = P(Et|xt)

@ This is called the sensor model (observation model) of the
system

o Notice direction of dependence: state causes evidence (but
inference goes in other direction!)

@ In umbrella world, rain causes umbrella to appear

o Finally, we need a prior distribution over initial states P(Xg)

@ These three distributions give a specification of the complete
JPD:

t
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Umbrella world example

@ Bayesian network structure and conditional distributions

@ Transition model P(Rain¢|Rain;_1), sensor model
P(Umbrella;|Rain;)
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@ Rain depends only on rainfall on previous day, whether this is
reasonable depends on domain!
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Time and uncertainty States and observations
Stationary processes and the Markov assumption

Stationary processes and the Markov assumption

o If Markov assumptions seems too simplistic for some domains
(and hence, inaccurate), two measures can be taken

o We can increase the order of the Markov process model
e We can increase the set of state variables
@ For example, add information about season, pressure or
humidity
@ But this will also increase prediction requirements (problem
alleviated if we add new sensors)

e Example: dependency of predicting movement of robot on
battery power level

o add battery level sensor
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Summary

Summary

Time and Uncertainty:

@ In a dynamic environment, random variables change values
over time

@ There are (Latent) state variables and variables whose values
are observed.

o Stationarity and Markov assumptions are important for
obtaining a compact representation of an unbounded process

@ They're also important for practical inference!
@ Next time: Time and Uncertainty: Inference
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