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Introduction
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Summary

Where are we?

Last time. . .
DBNs represent uncertainty in dynamic environments
Two assumptions

Change is a stationary process
Markov assumption

justify treating each time slice as a BN
(with links from Xt to Xt+1)
Today: DBN Inference I
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Reminder

Bayesian network structure and conditional distributions
Transition model P(Raint |Raint−1), sensor model
P(Umbrellat |Raint)

Rain depends only on rainfall on previous day, whether this is
reasonable depends on domain!
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Inference tasks in temporal models

Now that we have described general model, we need inference
methods for a number of tasks
Filtering/monitoring: compute belief state given evidence
to date, i.e. P(Xt |e1:t)

Interestingly, an almost identical calculation yields the
likelihood of the evidence sequence P(e1:t)

Prediction: computing posterior distribution over a future
state given evidence to date: P(Xt+k |e1:t)

Smoothing/hindsight: compute posterior distribution of past
state, P(Xk |e1:t), 0≤ k < t

Most likely explanation: compute argmaxx1:t P(x1:t |e1:t)
i.e. the most likely sequence of states given evidence
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Filtering and prediction

Done by recursive estimation: compute result for t+1 by
doing it for t and then updating with new evidence et+1. That
is, for some function f :

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t))
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Why recursion works

P(Xt+1|e1:t+1) = P(Xt+1|e1:t ,et+1) (split notation)
= αP(Xt+1,e1:t ,et+1) (Bayes)
= αP(et+1|Xt+1,e1:t)P(Xt+1,e1:t) (Bayes)
= α

′P(et+1|Xt+1,e1:t)P(Xt+1|e1:t) (Bayes)
= α

′P(et+1|Xt+1)P(Xt+1|e1:t) (Markov)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1,xt |e1:t) (marginalisation)

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1,xt ,e1:t)

P(e1:t)
(Bayes)

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1|xt ,e1:t)P(xt ,e1:t)

P(e1:t)
(Bayes)
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Derivation continued. . .

P(Xt+1|e1:t+1) =

= α
′P(et+1|Xt+1)∑

xt

P(Xt+1|xt ,e1:t)P(xt ,e1:t)

P(e1:t)
(last slide!)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1|xt ,e1:t)P(xt |e1:t) (Bayes)

= α
′P(et+1|Xt+1)∑

xt
P(Xt+1|xt)P(xt |e1:t) (Markov)

P(et+1|Xt+1) is sensor model; P(Xt+1|xt) is transition model,
P(xt |e1:t) is recursive bit.
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Filtering and prediction

We can view estimate P(Xt |e1:t) as “message” f1:t propagated
and updated through sequence
We write this process as f1:t+1 = αForward(f1:t ,et+1)

Time and space requirements for this are constant regardless
of length of sequence
This is extremely important for agent design!
All this is very abstract, let’s look at an example
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Example Compute P(R2|u1:2), U1 = true, U2 = true

Suppose P(R0) = 〈0.5,0.5〉
Recursive equations:

P(R2|u1,u2) = αP(u2|R2)∑r1 P(R2|r1)P(r1|u1)

P(R1|u1) = α ′P(u1|R1)∑r0 P(R1|r0)P(r0)
= α ′〈0.9,0.2〉(〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5)
= α ′〈0.9,0.2〉〈0.5,0.5〉
= 〈0.818,0.182〉

P(R2|u1,u2) = α〈0.9,0.2〉(〈0.7,0.3〉×0.818+ 〈0.3,0.7〉×0.182)
= α〈0.9,0.2〉〈0.627,0.373〉
= α〈0.565,0.075〉
= 〈0.883,0.117〉
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Filtering and prediction

Prediction works like filtering without new evidence
Computation involves only transition model and not sensor
model:

P(Xt+k+1|e1:t) = ∑
xt+k

P(Xt+k+1|xt+k)P(xt+k |e1:t)

As we predict further and further into the future, distribution
of rain converges to 〈0.5,0.5〉
This is called the stationary distribution of the Markov
process (the more uncertainty, the quicker it will converge)
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Filtering and prediction

We can use the above method to compute likelihood of
evidence sequence P(e1:t)

Useful to compare different temporal models
Use a likelihood message l1:t = P(Xt ,e1:t) and compute

l1:t+1 = αForward(l1:t ,et+1)

Once we compute l1:t , summing out yields likelihood

L1:t = P(e1:t) = ∑
xt

l1:t(xt ,e1:t)
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Summary

DBNs for reasoning about Time and uncertainty
Inference: Filtering and prediction
Recursion
Next time: Time and Uncertainty: Inference II

Alex Lascarides Informatics 2D 12 / 12


	Introduction
	Inference in temporal models
	Summary

