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Lecture 27: Time and Uncertainty I
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Where are we?

Last time ...
e Time in reasoning about uncertainty
@ Markov assumption, stationarity
o Algorithms for reasoning about temporal processes
o Filtering and prediction
Today ...

o Time and uncertainty Il
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Smoothing

Smoothing

@ Smoothing is computation of distribution of past states given
current evidence, i.e. P(Xklert), 1<k <t

O
B @ ®

o Easiest to view as 2-step process (up to k, then k+1 to t)

P(Xkle1:t) = P(Xk|e1:k, ex+1:¢) (split notation)
= oP(Xkler:k)P(ext1:¢[Xk,e1:4) (Bayes)
= oP(Xyle1:x)P(ex+1:¢|Xk) (conditional independence)
= afy.byr1e

o Here "backward” message is bxi1.+ = P(ext1.¢|Xx) analogous
to forward message
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Smoothing

Smoothing

@ Formula for backward message:

Pleks1:eXi) = Y Plersrxur1) Plersa:elxu+1)P (k1 Xk)
Xk+1
(I'll show this is true shortly)

o First term is sensor model; third term is transition model;
second is ‘recursive call’

o Define by 1.; = Backward(bx 2.,k 11:¢)

@ The backward phase has to be initialised with
bet1:.t = P(er+1:¢|Xt) = 1 (a vector of 1s) because probability
of observing empty sequence is 1

@ As before, all this is quite abstract, back to our example
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Smoothing

Umbrella World: Compute P(Ry|u1, up)
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Umbrella,

We have P(R1|u1,u2) = otP(Ry|u1)P(uz|Ry)
So we'll need to remind ourselves of P(Ry|u1) from last lecture:

o P(Ry) =X, P(Ri|ro)P(ro) = (0.7,0.3) x 0.5+ (0.3,0.7) x 0.5 =
(0.5,0.5)
o Update with evidence U; = true yields:

P(Ry|u1) = atP(u1|R;)P(Ry) = (0.9,0.2)(0.5,0.5) ~ (0.818,0.182)
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Smoothing

Smoothing Example Continued

P(R1|U1, U2) = OCP(R1|U1)P(U2‘R1)
o Forward filtering process yielded (0.818,0.182) for first term
@ The second term can be obtained through backward recursion:
U2|R1 ZP(U2|I‘2 |r2) (r2|R1)

= (0.9x 1 x (0.7,0.3)) + (0.2 x 1 x (0.3,0.7)) = (0.69,0.41)

Plugged into the above equation this yields
P(Ry|uy, uz) = 0(0.818,0.182) x (0.69,0.41) ~ (0.883,0.117)

@ So our confidence that it rained on Day 1 increases when we
see the umbrella on the second day as well as the first.

@ A simple improved version of this that stores results runs in
linear time (forward-backward algorithm)
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Smoothing

Deriving the backward message

PlersrelXi) = Y Plerralxrst) Plersa:exust)P(xur1lXk)

Xk41

P(ek+1:t|Xk) = Z P(ek+1:t, Xk+1|Xk) (marginalisation)
Xk+1
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Smoothing

Deriving the backward message

PlersrelXi) = Y Plerralxrst) Plersa:exust)P(xur1lXk)

Xk+1
Plers1:elXi) = Y, Plersret: Xkr1/X) (marginalisation)
*k+1
= Y Plexsin,enrat, Xky1/Xe) (split notation)

Xk+1
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Smoothing

Deriving the backward message
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Smoothing

Deriving the backward message
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Smoothing

Deriving the backward message
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Smoothing

Deriving the backward message

PlersrelXi) = Y Plerralxrst) Plersa:exust)P(xur1lXk)
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Finding the most likely sequence

Finding the most likely sequence

e Suppose [true, true, false, true, true] is the umbrella sequence
for first five days, what is the most likely weather sequence
that caused it?

@ Could we use smoothing procedure to find posterior
distribution for weather at each step and then use most likely
weather at each step to construct sequence?

@ NO! Smoothing considers distributions over individual time
steps, but we must consider joint probabilities over all time
steps

o Actual algorithm is based on viewing each sequence as path
through a graph (nodes=states at each time step)
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Finding the most likely sequence

Finding the most likely sequence

@ In umbrella example:

Rain, Rain, Rain, Rainy Rain 5

trie | true ‘ frue | true | rme
(a)

false | false false | false fal?e
Umbrellay true trie false true

8182 5155 0361 0334 0210
(b)

1818 0491 1237 0173 .0024|

myy s M3 My mys

@ Look at states with Rains = true (part (a)), Markov property
o most likely path to this state consists of most likely path to
state at time 4 followed by transition to Rains = true
o state at time 4 that will become part of the path is whichever
maximises likelihood of the path
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Finding the most likely sequence

Finding the most likely sequence

@ There is a recursive relationship between most likely paths to
x¢+1 and most likely paths to each state x;

MaXyx, . .x¢ P(Xla (RN ,Xt,xt+1 |e1:t+1)

= aP(ery1|Xer1) max(P(Xep1]x:) max P(x1,...,Xe—1,X¢|€1:t))
Xt X1 .. X¢—1

o This is like filtering only that the forward message is replaced
by

mip.: = max P(Xla"'axtflvxtlel:t)
X1 X¢—1

@ And summing (marginalisation) is now replaced by
maximisation
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Finding the most likely sequence

Finding the most likely sequence

@ This algorithm (Viterbi algorithm) is similar to filtering

@ Runs forward along sequence computing m message in each
step

@ Progress in example shown in part (b) of diagram above

@ In the end it has probability for most likely sequence for
reaching each final state
Easy to determine overall most likely sequence

@ Has to keep pointers from each state back to the best state
that leads to it
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Hidden Markov Models

Hidden Markov Models

(*]

So far, we have seen a general model for temporal probabilistic
reasoning (independent of transition/sensor models)

@ In this and the following lecture we are going to look at more
concrete models and applications

e Hidden Markov Models (HMMs): temporal probabilistic
model in which state of the process is described by a single
variable

o Like our umbrella example (single variable Rain;)

@ More than one variable can be accommodated, but only by
combining them into a single “mega-variable”

@ Structure of HMMs allows for a very simple and elegant matrix
implementation of basic algorithms
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Summary

*]
(*]
*]
(*]

The forward-backward algorithm
Finding the most likely sequence (Viterbi algorithm)
Talked about HMMs

HMMs: single state variable, simplifies algorithms (see other
courses for these)

Huge significance, for example in speech recognition:
P(words|signal) = aP(signal|words)P(words)

Vast array of applications, but also limits.

Next time: Dynamic Bayesian Networks
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