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Where are we?

Last time . . .

Time in reasoning about uncertainty
Markov assumption, stationarity
Algorithms for reasoning about temporal processes
Filtering and prediction

Today . . .

Time and uncertainty II
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Smoothing

Smoothing is computation of distribution of past states given
current evidence, i.e. P(Xk |e1:t), 1≤ k < t

Easiest to view as 2-step process (up to k , then k +1 to t)

P(Xk |e1:t) = P(Xk |e1:k ,ek+1:t) (split notation)
= αP(Xk |e1:k)P(ek+1:t |Xk ,e1:k) (Bayes)
= αP(Xk |e1:k)P(ek+1:t |Xk) (conditional independence)
= αf1:kbk+1:t

Here “backward” message is bk+1:t = P(ek+1:t |Xk) analogous
to forward message
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Smoothing

Formula for backward message:

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

(I’ll show this is true shortly)
First term is sensor model; third term is transition model;
second is ‘recursive call’
Define bk+1:t = Backward(bk+2:t ,ek+1:t)

The backward phase has to be initialised with
bt+1:t = P(et+1:t |Xt) = 1 (a vector of 1s) because probability
of observing empty sequence is 1
As before, all this is quite abstract, back to our example
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Umbrella World: Compute P(R1|u1,u2)

We have P(R1|u1,u2) = αP(R1|u1)P(u2|R1)
So we’ll need to remind ourselves of P(R1|u1) from last lecture:

P(R1) = ∑r0 P(R1|r0)P(r0) = 〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5 =

〈0.5,0.5〉
Update with evidence U1 = true yields:

P(R1|u1) = αP(u1|R1)P(R1) = α〈0.9,0.2〉〈0.5,0.5〉 ≈ 〈0.818,0.182〉
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Smoothing Example Continued

P(R1|u1,u2) = αP(R1|u1)P(u2|R1)

Forward filtering process yielded 〈0.818,0.182〉 for first term
The second term can be obtained through backward recursion:

P(u2|R1) = ∑
r2

P(u2|r2)P(|r2)P(r2|R1)

= (0.9×1×〈0.7,0.3〉)+(0.2×1×〈0.3,0.7〉) = 〈0.69,0.41〉

Plugged into the above equation this yields

P(R1|u1,u2) = α〈0.818,0.182〉×〈0.69,0.41〉 ≈ 〈0.883,0.117〉

So our confidence that it rained on Day 1 increases when we
see the umbrella on the second day as well as the first.
A simple improved version of this that stores results runs in
linear time (forward-backward algorithm)
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Deriving the backward message

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1:t ,xk+1|Xk) (marginalisation)

= ∑
xk+1

P(ek+1,ek+2:t ,xk+1|Xk) (split notation)

= ∑
xk+1

P(ek+1|ek+2:t ,xk+1,Xk)P(ek+2:t ,xk+1|Xk) (Bayes)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t ,xk+1|Xk) (independence)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1,Xk)P(xk+1|Xk) (Bayes)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk) (Bayes)
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Finding the most likely sequence

Suppose [true, true, false, true, true] is the umbrella sequence
for first five days, what is the most likely weather sequence
that caused it?
Could we use smoothing procedure to find posterior
distribution for weather at each step and then use most likely
weather at each step to construct sequence?
NO! Smoothing considers distributions over individual time
steps, but we must consider joint probabilities over all time
steps
Actual algorithm is based on viewing each sequence as path
through a graph (nodes=states at each time step)
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Finding the most likely sequence

In umbrella example:

Look at states with Rain5 = true (part (a)), Markov property
most likely path to this state consists of most likely path to
state at time 4 followed by transition to Rain5 = true
state at time 4 that will become part of the path is whichever
maximises likelihood of the path
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Finding the most likely sequence

There is a recursive relationship between most likely paths to
xt+1 and most likely paths to each state xt

maxx1...xtP(x1, . . . ,xt ,Xt+1|e1:t+1)

= αP(et+1|Xt+1)max
xt

(P(Xt+1|xt) max
x1...xt−1

P(x1, . . . ,xt−1,xt |e1:t))

This is like filtering only that the forward message is replaced
by

m1:t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt |e1:t)

And summing (marginalisation) is now replaced by
maximisation
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Finding the most likely sequence

This algorithm (Viterbi algorithm) is similar to filtering
Runs forward along sequence computing m message in each
step
Progress in example shown in part (b) of diagram above
In the end it has probability for most likely sequence for
reaching each final state
Easy to determine overall most likely sequence
Has to keep pointers from each state back to the best state
that leads to it
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Hidden Markov Models

So far, we have seen a general model for temporal probabilistic
reasoning (independent of transition/sensor models)
In this and the following lecture we are going to look at more
concrete models and applications
Hidden Markov Models (HMMs): temporal probabilistic
model in which state of the process is described by a single
variable
Like our umbrella example (single variable Raint)
More than one variable can be accommodated, but only by
combining them into a single “mega-variable”
Structure of HMMs allows for a very simple and elegant matrix
implementation of basic algorithms
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Summary

The forward-backward algorithm
Finding the most likely sequence (Viterbi algorithm)
Talked about HMMs
HMMs: single state variable, simplifies algorithms (see other
courses for these)
Huge significance, for example in speech recognition:

P(words|signal) = αP(signal |words)P(words)

Vast array of applications, but also limits.
Next time: Dynamic Bayesian Networks
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