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Where are we?

So far. . .
Representing uncertainty in dynamic environments
Reasoning in uncertain dynamic environments

Filtering and prediction

Today: Time and uncertainty: Inference II
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Smoothing

Smoothing is computation of distribution of past states given
current evidence, i.e. P(Xk |e1:t), 1≤ k < t

Easiest to view as 2-step process (up to k , then k+1 to t)

P(Xk |e1:t) = P(Xk |e1:k ,ek+1:t) (split notation)
= αP(Xk |e1:k)P(ek+1:t |Xk ,e1:k) (Bayes)
= αP(Xk |e1:k)P(ek+1:t |Xk) (conditional independence)
= αf1:kbk+1:t

Here “backward” message is bk+1:t = P(ek+1:t |Xk) analogous
to forward message

Alex Lascarides Informatics 2D 3 / 8



Introduction
Smoothing
Summary

Smoothing

Formula for backward message:

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

(I’ll show this is true shortly)
First term is sensor model; third term is transition model;
second is ‘recursive call’
Define bk+1:t = Backward(bk+2:t ,ek+1:t)

The backward phase has to be initialised with
bt+1:t = P(et+1:t |Xt) = 1 (a vector of 1s) because probability
of observing empty sequence is 1
As before, all this is quite abstract, back to our example
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Umbrella World: Compute P(R1|u1,u2)

We have P(R1|u1,u2) = αP(R1|u1)P(u2|R1)
So we’ll need to remind ourselves of P(R1|u1) from last lecture:

P(R1) = ∑r0 P(R1|r0)P(r0) = 〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5 =

〈0.5,0.5〉
Update with evidence U1 = true yields:

P(R1|u1) = αP(u1|R1)P(R1) = α〈0.9,0.2〉〈0.5,0.5〉 ≈ 〈0.818,0.182〉
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Smoothing Example Continued

P(R1|u1,u2) = αP(R1|u1)P(u2|R1)

Forward filtering process yielded 〈0.818,0.182〉 for first term
The second term can be obtained through backward recursion:

P(u2|R1) = ∑
r2

P(u2|r2)P(|r2)P(r2|R1)

= (0.9×1×〈0.7,0.3〉)+(0.2×1×〈0.3,0.7〉) = 〈0.69,0.41〉

Plugged into the above equation this yields

P(R1|u1,u2) = α〈0.818,0.182〉×〈0.69,0.41〉 ≈ 〈0.883,0.117〉

So our confidence that it rained on Day 1 increases when we
see the umbrella on the second day as well as the first.
A simple improved version of this that stores results runs in
linear time (forward-backward algorithm)
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Deriving the backward message

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1:t ,xk+1|Xk) (marginalisation)

= ∑
xk+1

P(ek+1,ek+2:t ,xk+1|Xk) (split notation)

= ∑
xk+1

P(ek+1|ek+2:t ,xk+1,Xk)P(ek+2:t ,xk+1|Xk) (Bayes)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t ,xk+1|Xk) (independence)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1,Xk)P(xk+1|Xk) (Bayes)

= ∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk) (Bayes)
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Summary

Hindsight computable via the forward backward algorithm.
The equations involve recursion
(as with filtering and prediction)
Next time: Time and Uncertainty: Inference III

Finding the most likely sequence (Viterbi algorithm)
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