Informatics 2D: Reasoning and Agents

Alex Lascarides
informatics

Lecture 28b: Dynamic Bayesian Networks II

Where are we?

Last time. . .

- Dynamic Bayesian Networks:
- Which random variables and dependencies (the graphical component)?
- What kind of probability distributions?
- Saw an example where the model is deficient in a scenario that's likely to occur.
- Today: What can you do about that?

Reminder: Transient failure model

- BMeter and Z are observed; all others are latent
- Gaussian Error model for $\mathbf{P}\left(\right.$ BMeter $_{t} \mid$ Battery $\left._{t}\right)$
- We saw last time that a sudden drop from 5 to 0 for BMeter leads to poor quality inference.

How to fix inferences about errors: first attempt

- To handle failure properly, sensor model must include possibility of (radical) meter failure
- Simplest failure model: assign larger probability to 0 reading than a Gaussian error model would; e.g.
$P\left(\right.$ BMeter $_{t}=0 \mid$ Battery $\left._{t}=5\right)=0.03$
- When faced with 0 reading, provided that predicted probability of empty battery is much less than 0.03 , best explanation is meter failure
- This model is much less susceptible to poor inference, because an explanation is available
- However, it cannot cope with persistent failure either

Transient failure model

- Handling transient failure with explicit error models
- In case of permanent failure the robot will (wrongly) believe the battery is empty

How to fix inferences about errors: second attempt

- Persistent failure models describe how sensor behaves under normal conditions and after failure
- Add additional variable BMBroken, and CPT to next BMBroken state has a very small probability if not broken, but 1.0 if broken before (persistence arc)
- When BMBroken is true, BMeter will be 0 regardless of Battery:

Persistent failure

- In case of temporary blip probability of broken sensor rises quickly but goes back if 5 is observed
- In case of persistent failure, robot assumes discharge of battery at "normal" rate

Exact inference in DBNs

- Since DBNs are BNs, we already have inference algorithms like variable elimination
- Essentially DBN equivalent to infinite "unfolded" BN, but slices beyond required inference period are irrelevant
- Unrolling: reproducing basic time slice to accommodate observation sequence

Exact inference in DBNs

- Exact inference in DBNs is intractable, and this is a major problem.
- There are approximate inference methods that work well in practice.
- This issue is currently a hot topic in AI...

Summary

- Account of time and uncertainty complete
- Looked at general Markovian models
- HMMs
- DBNs as general case
- Quite intractable, but powerful
- Next time: Decision Making under Uncertainty

QUESTION:

Write down the equation for the query $\mathrm{P}\left(\right.$ BMBroken $_{2} \mid$ Battery $_{\mathbf{1}}=5$, BMeter $_{2}=0$, BMBroken $\left._{1}=0\right)$ in terms of the sum and product of conditional probabilities that are specified in the probabilities tables of the DBN given in the lecture.

$$
\begin{array}{lr}
\mathbf{P}\left(B M B_{\mathbf{2}} \mid B_{\mathbf{1}}=\mathbf{5}, B M_{\mathbf{2}}=0, B M B_{\mathbf{1}}=0\right)= & \text { Bayes } \\
\alpha \mathbf{P}\left(B M B_{\mathbf{2}}, B_{\mathbf{1}}=\mathbf{5}, B M_{\mathbf{2}}=0, B M B_{\mathbf{1}}=0\right) & \text { marginalisation } \\
=\alpha \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M B_{\mathbf{2}}, b_{\mathbf{2}}, B_{\mathbf{1}}=\mathbf{5}, B M_{\mathbf{2}}=0, B M B_{\mathbf{1}}=0\right) & \text { Bayes } \\
=\alpha \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M_{\mathbf{2}}=0 \mid B M B_{\mathbf{2}}, B_{\mathbf{2}}, B_{\mathbf{1}}=5, B M B_{\mathbf{1}}=0\right) \mathbf{P}\left(B M B_{\mathbf{2}}, b_{\mathbf{2}}, B_{\mathbf{1}}=5, B M B_{\mathbf{1}}=0\right) & \text { Markov } \\
=\alpha \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M_{\mathbf{2}}=0 \mid B M B_{\mathbf{2}}, B_{\mathbf{2}}\right) \mathbf{P}\left(B M B_{\mathbf{2}}, b_{\mathbf{2}}, B_{\mathbf{1}}=\mathbf{5}, B M B_{\mathbf{1}}=0\right) & \text { Bayes } \\
=\alpha \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M_{\mathbf{2}}=0 \mid B M B_{\mathbf{2}}, b_{\mathbf{2}}\right) \mathbf{P}\left(B M B_{\mathbf{2}} \mid b_{\mathbf{2}}, B_{\mathbf{1}}=5, B M B_{\mathbf{1}}=0\right) \mathbf{P}\left(b_{\mathbf{2}}, B_{\mathbf{1}}=5, B M B_{\mathbf{1}}=0\right) & \text { Bayes } \\
=\alpha^{\prime} \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M_{\mathbf{2}}=0 \mid B M B_{\mathbf{2}}, b_{\mathbf{2}}\right) \mathbf{P}\left(B M B_{\mathbf{2}} \mid b_{\mathbf{2}}, B_{\mathbf{1}}=\mathbf{5}, B M B_{\mathbf{1}}=0\right) \mathbf{P}\left(b_{\mathbf{2}} \mid B_{\mathbf{1}}=5, B M B_{\mathbf{1}}=0\right) & \text { Markov } \\
=\alpha^{\prime} \sum_{b_{\mathbf{2}}} \mathbf{P}\left(B M_{\mathbf{2}}=0 \mid B M B_{\mathbf{2}}, b_{\mathbf{2}}\right) \mathbf{P}\left(B M B_{\mathbf{2}} \mid B M B_{\mathbf{1}}=0\right) \mathbf{P}\left(b_{\mathbf{2}} \mid B_{\mathbf{1}}=5\right) &
\end{array}
$$

