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Where are we?

Last time . . .

Looked at Dynamic Bayesian Networks
General, powerful method for describing temporal probabilistic
problems
Unfortunately exact inference computationally too hard
Methods for approximate inference often necessary

Today . . .

Decision Making under Uncertainty
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Combining beliefs and desires

Rational agents do things that are an optimal tradeoff
between:

the likelihood of reaching a particular resultant state (given
one’s actions) and
The desirability of that state

So far we have done the ‘likelihood’ bit: we know how to
evaluate the probability of being in a particular state at a
particular time.
But we’ve not looked at an agent’s preferences or desires
Now we will discuss utility theory in more detail to obtain a
full picture of decision-theoretic agent design
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Utility theory & utility functions

Agent’s preferences between world states are described using a
utility function
UF assigns some numerical value U(S) to each state S to
express its desirability for the agent
Nondeterministic action a has results Result(a) and
probabilities P(Result(a) = s ′|a,e) summarise agent’s
knowledge about its effects given evidence observations e.
Can be combined with probabilities for outcomes to obtain
expected utility of action:

EU(A|E ) = ∑
s ′
P(Result(a) = s ′|a,e)U(s ′)
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Utility theory & utility functions

Principle of maximum expected utility (MEU) says agent
should use action that maximises expected utility
In a sense, this summarises the whole endeavour of AI:

If agent maximises utility function that correctly reflects
the performance measure applied to it, then optimal perfor-
mance will be achieved by averaging over all environments
in which agent could be placed

Of course, this doesn’t tell us how to define utility function or
how to determine probabilities for any sequence of actions in a
complex environment
For now we will only look at one-shot decisions, not
sequential decisions (next lecture)

Alex Lascarides Informatics 2D 5 / 19



Utility theory & utility functions
Decision networks

Summary

Constraints on rational preferences
Constraints on rational preferences
Utility functions

Constraints on rational preferences

MEU sounds reasonable, but why should this be the best
quantity to maximise? Why are numerical utilities sensible?
Why single number?
Questions can be answered by looking at constraints on
preferences
Notation:

A� B A is preferred to B
A∼ B the agent is indifferent between A and B
A % B the agent prefers A to B or is indifferent between them

But what are A and B? Introduce lotteries with outcomes
C1 . . .Cn and accompanying probabilities
L= [p1,C1;p2,C2; . . . ;pn,Cn]
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Constraints on rational preferences

Outcome of a lottery can be state or another lottery
Can be used to understand how preferences between complex
lotteries are defined in terms of preferences among their
(outcome) states
The following are considered reasonable axioms of utility
theory
Orderability: (A� B)∨ (B � A)∨ (A∼ B)
Transitivity: If agent prefers A over B and B over C then he
must prefer A over C : (A� B)∧ (B � C )⇒ (A� C )

Example: Assume A� B � C � A and A, B , C are goods
Agent might trade A and some money for C if he has A
We then offer B for C and some cash and then trade A for B
Agent would lose all his money over time
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Constraints on rational preferences

Continuity: If B is between A and C in preference, then with
some probability agent will be indifferent between getting B
for sure and a lottery over A and C

A� B � C ⇒∃p [p,A;1−p,C ]∼ B

Substitutability: Indifference between lotteries leads to
indifference between complex lotteries built from them

A∼ B ⇒ [p,A;1−p,C ]∼ [p,B;1−p,C ]

Monotonicity: Preferring A to B implies preference for any
lottery that assigns higher probability to A

A� B ⇒ (p ≥ q⇔ [p,A;1−p,B]% [q,A;1−q,B]
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Decomposability example

Decomposability: Compound lotteries can be reduced to
simpler one

[p,A;1−p, [q,B;1−q,C ]]∼ [p,A; (1−p)q,B; (1−p)(1−q),C ]
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From preferences to utility

The following axioms of utility ensure that utility functions
follow the above axioms on preference:

Utility principle: there exists a function such that

U(A)> U(B)⇔ A� B U(A) = U(B)⇔ A∼ B

MEU principle: utility of lottery is sum of probability of
outcomes times their utilities

U([p1,S1; . . . ;pn,Sn]) = ∑
i

piU(Si )

But an agent might not know even his own utilities!
But you can work out his (or even your own!) utilities by
observing his (your) behaviour and assuming that he (you)
chooses to MEU.
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Utility functions

According to the above axioms, arbitrary preferences can be
expressed by utility functions

I prefer to have a prime number of £in my bank account; when
I have £10 I will give away £3.

But usually preferences are more systematic, a typical example
being money (roughly, we like to maximise our money)
Agents exhibit monotonic preference toward money, but how
about lotteries involving money?
“Who wants to be a millionaire”-type problem, is pocketing a
smaller amount irrational?
Expected monetary value (EMV) is actual expectation of
outcome
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Utility of money

Assume you can keep 1 million or risk it with the prospect of
getting three millions at the toss of a (fair) coin
EMV of accepting gamble is 0.5×0+0.5×3,000,000 which is
greater than 1,000,000
Use Sn to denote state of possessing wealth “n dollars”,
current wealth Sk+1M

Expected utilities become:
EU(Accept) = 1

2U(Sk)+
1
2U(Sk+3M)

EU(Decline) = U(Sk+1M)

But it all depends on utility values you assign to levels of
monetary wealth (is first million more valuable than second?)
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Utility of money (empirical study)

It turns out that for most people this is usually concave (curve
(a)), showing that going into debt is considered disastrous
relative to small gains in money—risk averse.

But if you’re already $10M in debt, your utility curve is more
like (b)—risk seeking when desperate!
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Utility scales

Axioms don’t say anything about scales
For example transformation of U(S) into U ′(S) = k1+k2U(S)
(k2 positive) doesn’t affect behaviour
In deterministic contexts behaviour is unchanged by any
monotonic transformation (utility function is value
function/ordinal function)
One procedure for assessing utilities is to use normalised
utility between “best possible prize” (u> = 1) and “worst
possible catastrophe” (u⊥ = 0)
Ask agent to indicate preference between S and the standard
lottery [p,u> : (1−p),u⊥], adjust p until agent is indifferent
between S and standard lottery, set U(S) = p
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Decision networks

What we now need is a way of integrating utilities into our
view of probabilistic reasoning
Decision networks (influence diagrams) combine BNs with
additional node types for actions and utilities
Illustrate with airport siting problem:

Alex Lascarides Informatics 2D 15 / 19



Utility theory & utility functions
Decision networks

Summary

Representing problems with DNs
Evaluating decision networks

Representing decision problems with DNs

Chance nodes (ovals) represent random variables with CPTs,
parents can be decision nodes
Decision nodes represent decision-making points at which
actions are available
Utility nodes represent utility function connected to all nodes
that affect utility directly
Often nodes describing outcome states are omitted and
expected utility associated with actions is expressed (rather
than states) – action-utility tables
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Representing decision problems with DNs

Simplified version with action-utility tables
Less flexible but simpler (like pre-compiled version of general
case)
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Evaluating decision networks

Evaluation of a DN works by setting decision node to every
possible value
“Algorithm”:

1 Set evidence variables for current state
2 For each value of decision node:

1 Set decision node to that value
2 Calculate posterior probabilities for parents of utility node
3 Calculate resulting (expected) utility for action

3 Return action with highest (expected) utility

Using any algorithm for BN inference, this yields a simple
framework for building agents that make single-shot decisions
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Summary

Foundations for rational decision making under uncertainty
Utility theory and its axioms, utility functions
Possible points of criticism?
Decision networks nicely blend with our BN framework
Only looked at one-shot decisions so far
Next time: Markov Decision Processes
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