Sequential decision problems

Informatics 2D: Reasoning and Agents

Alex Lascarides

o School of _e
informatics

SNV,
3.

;"E'Taé.
e

o <
orne?

Lecture 30: Markov Decision Processes

Alex Lascarides Informatics 2D 1/20

Sequential decision problems

Where are we?

Last time ...
@ Talked about decision making under uncertainty
o Looked at utility theory
@ Discussed axioms of utility theory
o Described different utility functions
o Introduced decision networks
Today ...

o Markov Decision Processes

Alex Lascarides Informatics 2D 2/20

Sequential decision problems

Sequential decision problems

@ So far we have only looked at one-shot decisions, but decision
process are often sequential

@ Example scenario: a 4x3-grid in which agent moves around
(fully observable) and obtains utility of +1 or -1 in terminal

states
3 08
1 START
1 2 3 4
(a) (b)

@ Actions are somewhat unreliable (in deterministic world,
solution would be trivial)

Alex Lascarides Informatics 2D 3/20

Sequential decision problems

Markov decision processes

@ To describe such worlds, we can use a (transition) model
T(s,a,s’) denoting the probability that action a in s will lead
to state s/

@ Model is Markovian: probability of reaching s’ depends only on
s and not on history of earlier states

@ Think of T as big three-dimensional table (actually a DBN)

o Utility function now depends on environment history

o agent receives a reward R(s) in each state s (e.g. -0.04 apart
from terminal states in our example)

@ (for now) utility of environment history is the sum of state
rewards

@ In a sense, stochastic generalisation of search algorithms!

Alex Lascarides Informatics 2D 4 /20

Sequential decision problems

Markov decision processes

o Definition of a Markov Decision Process (MDP):
Initial state: Sp
Transition model: T(s,a,s’)
Utility function: R(s)

@ Solution should describe what agent does in every state

@ This is called policy, written as &

o 7(s) for an individual state describes which action should be
taken in s

@ Optimal policy is one that yields the highest expected utility

(denoted by 7*)

Alex Lascarides Informatics 2D 5/20

Sequential decision problems

@ Optimal policies in the 4x3-grid environment
(a) With cost of -0.04 per intermediate state &* is conservative for
(3.1)
(b) Different cost induces direct run to terminal state/shortcut at
(3,1)/no risk/avoid both exits

- | - -»-»-»

[} } (=

A -

~|B|H

—_
’ f . f =R R(s) <—1.6284 —0.4278 < R(s) <-0.0850
—

=
-— | = V= |3 (4= =

1 2 3 4 “""+++'
0

_ —0.0221 < R(s) < R(s)>0
(a) (b)

Alex Lascarides Informatics 2D

6/20

Optimality in sequential decision problems

Optimality in sequential decision problems

@ MDPs very popular in various disciplines, different algorithms
for finding optimal policies

o Before we present some of them, let us look at utility functions
more closely

@ We have used sum of rewards as utility of environment history
until now, but what are the alternatives?

@ First question: finite horizon or infinite horizon

@ Finite means there is a fixed time N after which nothing
matters:

Vk Uh([So,Sl,...,SN+k]) = Uh([So,Sl,...,SN])

Alex Lascarides Informatics 2D 7/20

Optimality in sequential decision problems

Optimality in sequential decision problems

@ This leads to non-stationary optimal policies (N matters)

@ With infinite horizon, we get stationary optimal policies (time
at state doesn't matter)

@ We are mainly going to use infinite horizon utility functions

@ NOTE: sequences to terminal states can be finite even under
infinite horizon utility calculation

@ Second issue: how to calculate utility of sequences
o Stationarity here is reasonable assumption:

S0 =5y A\[50,51,5-..] = [50:51,Sn,---] = [s1,52...] = [s1,S5,- -]

Alex Lascarides Informatics 2D 8/20

Optimality in sequential decision problems

Optimality in sequential decision problems

o

Stationarity may look harmless, but there are only two ways to
assign utilities to sequences under stationarity assumptions

Additive rewards:

(%]

Uh([SQ,Sl,SQ. .]) = R(So)—|— R(51)+ R(52)+ ..

©

Discounted rewards (for discount factor 0 <y <1)
Un([s0,51,52--.]) = R(50) + YR(S1) + V*R(S2) + ...

Discount factor makes more distant future rewards less
significant

©

©

We will mostly use discounted rewards in what follows

Alex Lascarides Informatics 2D 9/20

Optimality in sequential decision problems

Optimality in sequential decision problems

@ Choosing infinite horizon rewards creates a problem

@ Some sequences will be infinite with infinite (additive) reward,
how do we compare them?

@ Solution 1: with discounted rewards the utility is bounded if
single-state rewards are

Uh([50351352 ..]) - Z ’th(St) S Z thmax = Rmax/(]- - }/)
t=0 t=0
@ Solution 2: under proper policies, i.e. if agent will eventually

visit terminal state, additive rewards are finite

@ Solution 3: compare average reward per time step

Alex Lascarides Informatics 2D 10/20

Value iteration Utilities of states
The value iteration algorithm

Value iteration

@ Value iteration is an algorithm for

calculating optimal policy in MDPs
Calculate the utility of each state and then select optimal

action based on these utilities

@ Since discounted rewards seemed to create no problems, we
will use

m* =argmaxE | Y v'R(s)|w
T t=0

as a criterion for optimal policy

Alex Lascarides Informatics 2D 11/20

Value iteration Utilities of states
The value iteration algorithm

Explaining * = argmaxz £ [Y5 o Y R(st)| 7]

@ Each policy 7 yields a tree, with root node sy, and daughters
to a node s are the possible successor states given the action
nn(s).

o T(s,a,s’) gives the probability of traversing an arc from s to
daughter s'.

So
1 1
51)
2 2 2 2
55 s5 s3 Sy

o E is computed by:

(a) For each path p in the tree, getting the product of the (joint)
probability of the path in this tree with its discounted reward,
and then

(b) Summing over all the products from (a)

@ So this is just a generalisation of single shot decision theory.

Alex Lascarides Informatics 2D 12/20

Value iteration Utilities of states
The value iteration algorithm

Utilities of states: : U(s) # R(s)!

@ R(s) is reward for being in s now.

o By making U(s) the utility of the states that might follow it,

U(s) captures long-term advantages from being in s
U(s) reflects what you can do from s;
R(s) does not.

@ States that follow depend on m. So utility of s given 7 is:
UT(s) = [Zy R(st)|m, sos]

o With this, “true” utility U(s) is U (s) (expected sum of
discounted rewards if executing optimal policy)

Alex Lascarides Informatics 2D

13/20

Value iteration Utilities of states
The value iteration algorithm

Utilities in our example

@ U(s) computed for our example from algorithms to come.
@ y=1, R(s) = —0.04 for nonterminals.

3 | 0812 | 0868 | 0.918

0660 | [=1]

2 0.762

1 0.705 0.655 0.611 0.388

Alex Lascarides Informatics 2D 14 /20

Value iteration Utilities of states
The value iteration algorithm

Utilities of states

@ Given U(s), we can easily determine optimal policy:

* o / /
n*(s) =arg m;'axg‘ T(s,a,s")U(s")

@ Direct relationship between
utility of a state and that of its neighbours:
Utility of a state is immediate reward plus expected utility
of subsequent states if agent chooses optimal action

@ This can be written as the famous Bellman equations:

U(s) = R(s) + }/maaxZ T(s,a,s)U(s")

Alex Lascarides Informatics 2D 15 /20

Value iteration Utilities of states
The value iteration algorithm

The value iteration algorithm

©

For n states we have n Bellman equations with n unknowns
(utilities of states)

o Value iteration is an iterative approach to solving the n
equations.

Start with arbitrary values and update them as follows:

©

Uip1(s) « R(s) +ymax)_ T(s,a,s")Ui(s')

The algorithm converges to right and unique solution

©

Like propagating values through network or utilities

©

Alex Lascarides Informatics 2D 16 /20

Value iteration Utilities of states
The value iteration algorithm

The value iteration algorithm

@ Value iteration in our example: evolution of utility values of
states

1 4,3)
(3.3)

Utility estimates

0 5 10 15 20 25 30

Number of iterations

Alex Lascarides Informatics 2D 17 /20

Decision-theoretic agents

Decision-theoretic agents

@ We now have (tediously) gathered all the ingredients to build
decision-theoretic agents

@ Transition and observation models will be described by a DBN

@ They will be augmented by decision and utility nodes to obtain
a dynamic DN

@ Decisions will be made by projecting forward possible action
sequences and choosing the best one

@ Practical design for a utility-based agent

Alex Lascarides Informatics 2D 18 /20

Decision-theoretic agents

Decision-theoretic agents

@ Dynamic decision networks look something like this

@ General form of everything we have talked about in uncertainty
part

= 8 @8 o8
To T‘o T‘@ To

Alex Lascarides Informatics 2D 19/20

Summary

9

Sequential decision making

©

Defined MDPs to model stochastic multi-step decision making
processes

©

Value iteration and policy iteration algorithms

©

Design of decision-theoretic utility-based agents based on
DDNs

Completes our account of reasoning under uncertainty

©

Alex Lascarides Informatics 2D 20/20

