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Where are we?

Last time . . .

Talked about decision making under uncertainty

Looked at utility theory

Discussed axioms of utility theory

Described different utility functions

Introduced decision networks

Today . . .

Markov Decision Processes
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Sequential decision problems

So far we have only looked at one-shot decisions, but decision
process are often sequential

Example scenario: a 4x3-grid in which agent moves around
(fully observable) and obtains utility of +1 or -1 in terminal
states
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Actions are somewhat unreliable (in deterministic world,
solution would be trivial)
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Markov decision processes

To describe such worlds, we can use a (transition) model
T (s,a,s ′) denoting the probability that action a in s will lead
to state s ′

Model is Markovian: probability of reaching s ′ depends only on
s and not on history of earlier states

Think of T as big three-dimensional table (actually a DBN)

Utility function now depends on environment history

agent receives a reward R(s) in each state s (e.g. -0.04 apart
from terminal states in our example)
(for now) utility of environment history is the sum of state
rewards

In a sense, stochastic generalisation of search algorithms!
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Markov decision processes

Definition of a Markov Decision Process (MDP):

Initial state: S0

Transition model: T (s,a,s ′)
Utility function: R(s)

Solution should describe what agent does in every state

This is called policy, written as π

π(s) for an individual state describes which action should be
taken in s

Optimal policy is one that yields the highest expected utility
(denoted by π∗)
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Example

Optimal policies in the 4x3-grid environment
(a) With cost of -0.04 per intermediate state π∗ is conservative for

(3,1)
(b) Different cost induces direct run to terminal state/shortcut at

(3,1)/no risk/avoid both exits
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Optimality in sequential decision problems

MDPs very popular in various disciplines, different algorithms
for finding optimal policies

Before we present some of them, let us look at utility functions
more closely

We have used sum of rewards as utility of environment history
until now, but what are the alternatives?

First question: finite horizon or infinite horizon

Finite means there is a fixed time N after which nothing
matters:

∀k Uh([s0,s1, . . . ,sN+k ]) = Uh([s0,s1, . . . ,sN ])
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This leads to non-stationary optimal policies (N matters)

With infinite horizon, we get stationary optimal policies (time
at state doesn’t matter)

We are mainly going to use infinite horizon utility functions

NOTE: sequences to terminal states can be finite even under
infinite horizon utility calculation

Second issue: how to calculate utility of sequences

Stationarity here is reasonable assumption:

s0 = s ′
0
∧ [s0,s1,s2 . . .]≻ [s ′
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Stationarity may look harmless, but there are only two ways to
assign utilities to sequences under stationarity assumptions

Additive rewards:

Uh([s0,s1,s2 . . .]) = R(s0)+R(S1)+R(S2)+ . . .

Discounted rewards (for discount factor 0≤ γ ≤ 1)

Uh([s0,s1,s2 . . .]) = R(s0)+ γR(S1)+ γ2R(S2)+ . . .

Discount factor makes more distant future rewards less
significant

We will mostly use discounted rewards in what follows
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Choosing infinite horizon rewards creates a problem

Some sequences will be infinite with infinite (additive) reward,
how do we compare them?

Solution 1: with discounted rewards the utility is bounded if
single-state rewards are

Uh([s0,s1,s2 . . .]) =
∞

∑
t=0

γtR(st)≤
∞

∑
t=0

γtRmax = Rmax/(1− γ)

Solution 2: under proper policies, i.e. if agent will eventually
visit terminal state, additive rewards are finite

Solution 3: compare average reward per time step
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Value iteration

Value iteration is an algorithm for
calculating optimal policy in MDPs

Calculate the utility of each state and then select optimal

action based on these utilities

Since discounted rewards seemed to create no problems, we
will use

π∗ = argmax
π

E

[

∞

∑
t=0

γtR(st)|π

]

as a criterion for optimal policy
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Explaining π∗ = argmaxπ E [∑∞
t=0 γ t

R(st)|π]

Each policy π yields a tree, with root node s0, and daughters
to a node s are the possible successor states given the action
π(s).

T (s,a,s ′) gives the probability of traversing an arc from s to
daughter s ′.
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E is computed by:
(a) For each path p in the tree, getting the product of the (joint)

probability of the path in this tree with its discounted reward,
and then

(b) Summing over all the products from (a)

So this is just a generalisation of single shot decision theory.
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Utilities of states: : U(s) 6= R(s)!

R(s) is reward for being in s now.

By making U(s) the utility of the states that might follow it,
U(s) captures long-term advantages from being in s

U(s) reflects what you can do from s;

R(s) does not.

States that follow depend on π. So utility of s given π is:

Uπ(s) = E

[

∞

∑
t=0

γtR(st)|π,s0 = s

]

With this, “true” utility U(s) is Uπ∗(s) (expected sum of
discounted rewards if executing optimal policy)
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The value iteration algorithm

Utilities in our example

U(s) computed for our example from algorithms to come.

γ = 1, R(s) =−0.04 for nonterminals.
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Utilities of states

Given U(s), we can easily determine optimal policy:

π∗(s) = argmax
a

∑
s ′

T (s,a,s ′)U(s ′)

Direct relationship between
utility of a state and that of its neighbours:

Utility of a state is immediate reward plus expected utility

of subsequent states if agent chooses optimal action

This can be written as the famous Bellman equations:

U(s) = R(s)+ γ max
a

∑
s ′

T (s,a,s ′)U(s ′)

Alex Lascarides Informatics 2D 15 / 20



Optimality in sequential decision problems
Value iteration

Decision-theoretic agents
Summary

Utilities of states
The value iteration algorithm

The value iteration algorithm

For n states we have n Bellman equations with n unknowns
(utilities of states)

Value iteration is an iterative approach to solving the n

equations.

Start with arbitrary values and update them as follows:

Ui+1(s)← R(s)+ γ max
a

∑
s ′

T (s,a,s ′)Ui (s
′)

The algorithm converges to right and unique solution

Like propagating values through network or utilities
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The value iteration algorithm

Value iteration in our example: evolution of utility values of
states
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Decision-theoretic agents

We now have (tediously) gathered all the ingredients to build
decision-theoretic agents

Transition and observation models will be described by a DBN

They will be augmented by decision and utility nodes to obtain
a dynamic DN

Decisions will be made by projecting forward possible action
sequences and choosing the best one

Practical design for a utility-based agent
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Dynamic decision networks look something like this

General form of everything we have talked about in uncertainty
part
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Summary

Sequential decision making

Defined MDPs to model stochastic multi-step decision making
processes

Value iteration and policy iteration algorithms

Design of decision-theoretic utility-based agents based on
DDNs

Completes our account of reasoning under uncertainty
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