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Lecture 30b: Markov Decision Processes
Computing optimal policies
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Introduction

Where are we?

Last time. ..

@ Markov Decision Processes for representing sequential decision
problems

@ Optimal policy: mapping from state to action that maximises
expected utility

@ Today: computing optimal policies
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Introduction

Reminder of our example

@ A 4x3-grid in which agent moves around (fully observable) and
obtains utility of +1 or -1 in terminal states

3 0.8
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1 START
1 2 3 4

(a) (b)

@ Actions are somewhat unreliable (in deterministic world,
solution would be trivial)
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Optimality in sequential decision problems

Optimality in sequential decision problems

@ MDPs very popular in various disciplines, different algorithms
for finding optimal policies

o Before we present some of them, let us look at utility functions
more closely

@ We have used sum of rewards as utility of environment history
until now, but what are the alternatives?

o First question: finite horizon or infinite horizon

@ Finite means there is a fixed time N after which nothing
matters:

Vk Uh([So,Sl,...,SN+k]) = Uh([So,Sl,...,SN])
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Optimality in sequential decision problems

Optimality in sequential decision problems

@ This leads to non-stationary optimal policies (N matters)

@ With infinite horizon, we get stationary optimal policies (time
at state doesn't matter)

@ We are mainly going to use infinite horizon utility functions

@ NOTE: sequences to terminal states can be finite even under
infinite horizon utility calculation

@ Second issue: how to calculate utility of sequences
o Stationarity here is reasonable assumption:

S0 =So A [50,51,52...] = [50:51: 505 -] = [s1,52...] = [S1, .. ]
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Optimality in sequential decision problems

Optimality in sequential decision problems

@ Stationarity may look harmless, but there are only two ways to
assign utilities to sequences under stationarity assumptions

o Additive rewards:
Un([s0,51,%2--.]) = R(s0) + R(51) + R(S2) + ...
@ Discounted rewards (for discount factor 0 <y <1)
Un([50,51,52-..]) = R(s0) + YR(S1) + VP R(S2) + ...

o Discount factor makes more distant future rewards less
significant

o We will mostly use discounted rewards in what follows
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Optimality in sequential decision problems

Optimality in sequential decision problems

@ Choosing infinite horizon rewards creates a problem

@ Some sequences will be infinite with infinite (additive) reward,
how do we compare them?

@ Solution 1: with discounted rewards the utility is bounded if
single-state rewards are

Uh([50751752 . ]) = Z 'th(St) < Z '}/tRmax = max/(1 - }’)
t=0 t=0
@ Solution 2: under proper policies, i.e. if agent will eventually

visit terminal state, additive rewards are finite

@ Solution 3: compare average reward per time step
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Utilities of states

Value iteration The value iteration algorithm

Value iteration

o Value iteration is an algorithm for

calculating optimal policy in MDPs
Calculate the utility of each state and then select optimal

action based on these utilities

@ Since discounted rewards seemed to create no problems, we
will use

Tt =arg m;xE Y YR(st)|m
t=0

as a criterion for optimal policy
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Utilities of states

Value iteration The value iteration algorithm

Explaining #* = argmaxz E [Y5 o Y R(st)| 7]

@ Each policy 7 yields a tree, with root node sy, and daughters
to a node s are the possible successor states given the action
7(s).

o T(s,a,s’) gives the probability of traversing an arc from s to
daughter s'.

So
1 2
51 51
11 1,2 2.1 22
S2 S2 S2 S2

o E is computed by:

(a) For each path p in the tree, getting the product of the (joint)
probability of the path in this tree with its discounted reward,
and then

(b) Summing over all the products from (a)

@ So this is just a generalisation of single shot decision theory.
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Utilities of states

Value iteration The value iteration algorithm

Utilities of states: : U(s) # R(s)!

@ R(s) is reward for being in s now.

@ By making U(s) the utility of the states that might follow it,
U(s) captures long-term advantages from being in s
U(s) reflects what you can do from s;
R(s) does not.

@ States that follow depend on . So utility of s given 7 is:

U(s)=E [i Y'R(st)|7,s0 = s]

t=0

o With this, “true” utility U(s) is U (s) (expected sum of
discounted rewards if executing optimal policy)
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Utilities of states
The value iteration algorithm

Value iteration

Utilities in our example

o U(s) computed for our example from algorithms to come.
@ y=1, R(s) = —0.04 for nonterminals.

3 | o812 | o0.868 | 0.918

0660 | [=1]

2 0.762

1 0.705 0.655 0.611 0.388
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Utilities of states

Value iteration The value iteration algorithm

Utilities of states

@ Given U(s), we can easily determine optimal policy:

n*(s)=arg maxz T(s,a,s")U(s")
Sl

o Direct relationship between
utility of a state and that of its neighbours:
Utility of a state is immediate reward plus expected utility
of subsequent states if agent chooses optimal action

@ This can be written as the famous Bellman equations:

U(s) = R(s)+ }/mgxz T(s,a,s")U(s)
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Utilities of states

Value iteration . ) .
The value iteration algorithm

The value iteration algorithm

o For n states we have n Bellman equations with n unknowns
(utilities of states)

o Value iteration is an iterative approach to solving the n
equations.

@ Start with arbitrary values and update them as follows:

U,'_H_(S) — R(S) —i—ymaxz T(57a7s/) Ui(sl)

@ The algorithm converges to right and unique solution

o Like propagating values through network or utilities
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Utilities of states
The value iteration algorithm

Value iteration

The value iteration algorithm

@ Value iteration in our example: evolution of utility values of
states

1 4.3)
T (3.3)

Utility estimates

0 5 10 15 20 25 30
Number of iterations
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Decision-theoretic agents

Decision-theoretic agents

@ We now have (tediously) gathered all the ingredients to build
decision-theoretic agents

@ Transition and observation models will be described by a DBN

@ They will be augmented by decision and utility nodes to obtain
a dynamic DN

@ Decisions will be made by projecting forward possible action
sequences and choosing the best one

@ Practical design for a utility-based agent
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Decision-theoretic agents

Decision-theoretic agents

o Dynamic decision networks look something like this

@ General form of everything we have talked about in uncertainty
part

At—2 At—l AH—I A!+2
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Summary

Summary

@ Sequential decision making

o Defined MDPs to model stochastic multi-step decision making
processes

@ Value iteration and policy iteration algorithms

@ Design of decision-theoretic utility-based agents based on
DDNs

@ Completes our account of reasoning under uncertainty

@ Next time: Al and Ethics
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