
Informatics 2D. Tutorial 9

Probabilities and Bayesian Networks Continued

Week 10

Part 1: Approximate Inference in Bayesian Net-
works

This part is based on the car model from last week (Figure 1):

1. Explain the basic principle used in rejection sampling, and apply it to
select which of the following samples is used by the algorithm for the
query:

P (D|R = true, L = false)

Describe the main problem with using rejection sampling.
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2. Using Algorithm 1, create a sample and compute its weight for the query:

P (D|R = true, L = false)

How does it avoid the problem seen in the rejection algorithm?

Figure 3: Probabilities

Part 2: Bayesian Networks

In a di↵erent model of the car, the alternator (A) can stop working due to an
electric fault (E) or due to the breaking of the drive belt (D). The failure of the
alternator causes complete discharge of the battery (B) that supplies current
to the radio (R) and lights (L). The battery, the lights and the radio may also
stop working for internal reasons.

1. Draw the Bayesian network that represents the model of the car, show-
ing the variables and the dependence/independence relationships between
them.

2. Use the obtained network and the probabilities listed in Figure 3 to com-
pute the probability of:

• P (d, e, a, b, ¬r, ¬l)

• P (¬d, e, ¬a, b, r, l)

Part 3: Exact Inference in Bayesian Networks

To make a probability inference query means to compute the posterior prob-
ability distribution for a set of query variables given some observed event. X
denoted the query variable, E denotes the set of evidence variables E1, ..., En,
Y denotes the non-evidence variables, also called hidden variables.

Conditional probability can be computed by summing terms from the full
joint distribution:

P (X|e) = ↵P (X, e) = ↵⌃P (X, e, y)

where ↵ is the normalisation factor.
Using the enumeration algorithm in Figure 4, Compute the conditional prob-

ability of:
P (D | A = true)
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Figure 1: Probabilities for the car model
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Algorithm 1 Likelihood Weighting algorithm

function Likelihood-Weighting(X,e,bn,N) returns an estimate of P (X|e)

inputs:

X, the query variable
e, observed values for variables E
bn, a Bayes net with variables {X} ∪E ∪Y /*Y=hidden vars*/
N , the total number of samples to be generated

local variables: W, a vector of weighted counts over X, initially 0

for j = 1 to N do
x, w ← Weighted-Sample(bn,e)
W[x]←W[x] + w where x is the value of X in x

return Normalize(W[X])

function Weighted-Sample(bn,e) returns an event and a weight
x←an event with n elements; w ← 1
for i=1 to n do
if Xi has a value xi in e
then w ← w×P(Xi = xi|parents(Xi))
else xi ← a random sample from P(Xi|parents(Xi))

return x,w

Trt−1 P (Trt)
t 0.8
f 0.9

Table 1: Transition model

Trt P (Ont)
t 0.8
f 0.1

Table 2: Sensor model

Part 2: Inference in Temporal Models

Task description

Living close to his office, John has no information about the punctuality of
trains. But looking at Tim, who arrives every morning by train, John can guess
if the train had a delay or not. Tim might be late for other reasons, so John
cannot be sure about the trains. However, Tim is usually punctual and can be
considered a good indicator.

Dynamic Bayesian Network

A dynamic Bayesian network is a Bayesian network that represents a temporal
probability distribution. In general, each slice of a DBN can have any number
of state variables Xt and evidence variables Et. For simplicity, we will assume
that the variables and their links are exactly replicated from slice to slice and
that the DBN represents a first order Markov process, so that each variable can
have parents only in its own slice of the immediatly preceding slice.

The DBN used to model the punctuality of trains is in figure 2.
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Train0 Train1

OnTime1

Train2

OnTime2

Figure 2: Task DBN

Inference in Temporal Models

Computing the posterior probability of an event of the past given evidence up
to the present is called smoothing or hindsight, that is P(Xk|e1:t) for 1 ≤ k < t.
P(Xk|e1:t) is most conveniently computed in two parts: the evidence up to k
and the evidence from k + 1 to t.

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)
= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k) using Bayes’ rule
= αP(Xk|e1:k)P(ek+1:t|Xk) using conditional independence

= αf1:kbk+1:t

Therefore, f1:k = P(Xk|e1:k) is the forward message from t = 1 to t = k,
while bk+1:t = P(ek+1:t|Xk) is the backward message from the current time t
back to t = k + 1.

1. Explain the meaning of the terms in the following formulas. How do you
obtain the numbers?

(a) f1:t+1 = αP(et+1|Xt+1)
∑

xt
P(Xt+1|xt)P (xt|e1:t)

(b) bk+1:t =
∑

xk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)

Smoothing exercise

Given the list of observations On = [on1 = true, on2 = false], and knowing that
P (Tr0) = 〈0.7, 0.3〉, we will compute the posterior distribution of the probabil-
ity of Tr1.

First of all, to compute general expression P (Xk|e1:t) in order to obtain
the smoothed estimate for the probability that the train is late at t = 1,
given the observations about punctuality on days 1 and 2, means to compute
P (Tr1|on1,¬on2).
We have seen earlier that:

P(Xk|e1:t) = αf1:kbk+1:t = αP(Xk|e1:k)P(ek+1:t|Xk)
therefore:

P (Tr1|on1,¬on2) = αf1:kbk+1:t = αP(Tr1|on1)P(¬on2|Tr1) (1)
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The term f1:k = P(Tr1|on1) is computed as follows. On day 1, Tim is on
time, so On1 = true. Prediction from day 0 to day 1 is:
P(Tr1) =

∑
tr0

P(Tr1|tro)P (tr0)

= 〈0.8, 0.2〉 × 0.7 + 〈0.9, 0.1〉 × 0.3
= 〈0.56, 0.14〉+ 〈0.27, 0.03〉
= 〈0.83, 0.17〉
Updating the value with evidence for t = 1:

P(Tr1|on1) = αP(on1|Tr1)P(Tr1) = α 〈0.8, 0.1〉 〈0.83, 0.17〉
= α 〈0.664, 0.017〉 = 1

0.664+0.01 〈0.664, 0.017〉 = 〈0.975, 0.025〉
We have obtained the first term in the equation 1.

2. Compute the term bk+1:t in equation 1.

3. Plug the results into the equation 1 and compute the smoothed estimate for the
train being late on the second day

Hidden Markov Model

Every hidden Markov model can be represented as a DBN with a single state
variable and a single evidence variable. Every discrete variable DBN can be
represented as an HMM: we can combine all the state variables in the DBN into
a single state variable whose values are all the possible tuples of the individual
state variables.

If we consider the single, discrete state variable Xt has values denoted by
integers 1, . . . , S, where S is the number of possible states, then the transition
model P(Xt|Xt−1) becomes an S×S matrix T, where Tij = P (Xt = j|Xt−1 =
i) and the index i indicates the row, while j indicates the column.

The sensor model can also be put in matrix form: for each time step t, we
construct a diagonal matrix Ot whose diagonal entries are given by the values
P (et|Xt = i) and whose other entries are 0.
The forward equation, seen above, becomes:

f1:t+1 = Ot+1T
T f1:t

where TT is the transposed matrix of T. The backward equation becomes:

bk+1:t = TOk+1bk+2:t

4. Is the model in the example an HMM? Why?

5. Write the T matrix for the example.

6. Write the O1and O2 matrices for the example (given that on1 = true and
on2 = false)
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7. Given the same situation seen in question 2 ( On = [on1 = true, on2 = false],
P (Tr0) = 〈0.7, 0.3〉), compute the posterior distribution of the probability of
Tr1 using the matrix formulation for the forward and backward equations:

(a) compute f1:k with the matrices.

(b) compute bk+1:t with the matrices.

(c) compute P(Xk|e1:t) = αf1:kbk+1:t.
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Matrix and Vector revision

Vectors

• A vector is an ordered sequence of values: x = 〈3, 4〉, y = 〈2, 3〉.

• Vector addition x + y is the elementwise sum: x + y = 〈3 + 2, 4 + 3〉 = 〈5, 7〉

• Scalar multiplication multiplies each element by a constant: 2x = 〈2× 3, 2× 4〉 =
〈6, 8〉

• The dot product of vector is obtained as:
x · y =

∑n
i=1 xiyi

So, in the example:

x · y = 〈3 ∗ 2, 4 ∗ 3〉 = 〈6, 12〉

Matrices

• A matrix is a rectangular array of values arranged into rows and columns:

M =

(
m11 m12

m21 m22

)
The index i indicates the row, while j indicates the column.

• The sum of two matrices is defined by adding corresponding elements:
M + N = mij + nik

The sum is undefined if M and N have different sizes.
For example:

M + N =

(
1 2
2 3

)
+

(
3 4
5 2

)
=

(
1 + 3 2 + 4
2 + 5 3 + 2

)
=

(
4 6
7 5

)
• The multiplication of a matrix by a scalar is:

cM = cmij

For example:

cM = 2

(
1 2
2 3

)
=

(
2 4
4 6

)
• The product between matrices MN is defined only if the second matrix has the same

number of rows as the first has columns:
if M is of size a× b, then N must be of size b× c, and resulting matrix is of size a× c.
If the matrices are of appropriate size, then:
MN =

∑
j mijnjk

In the example:

M + N =

(
1 2
2 3

)(
3 4
5 2

)
=

(
1× 3 + 2× 5 1× 4 + 2× 2
2× 3 + 3× 5 2× 4 + 3× 2

)
=

(
13 8
21 14

)
• The transpose of a matrix M is written MT and is formed turned rows into columns.

For example:

NT =

(
3 4
5 2

)T

=

(
3 5
4 2

)
• The identity matrix I has the elements Ii,j equal to 1 when i = j (that is, on the

diagonal) and equal to 0 otherwise. The multiplication of a matrix M by an identiy

matrix I yields the matrix M: MI = M.
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