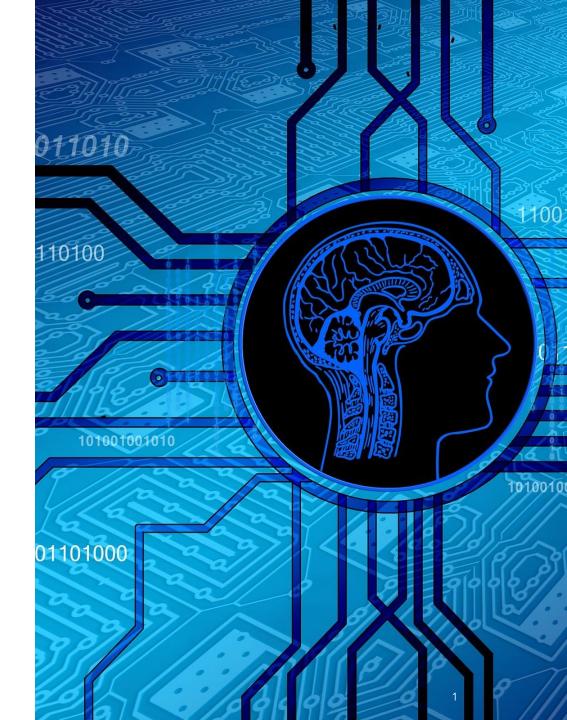
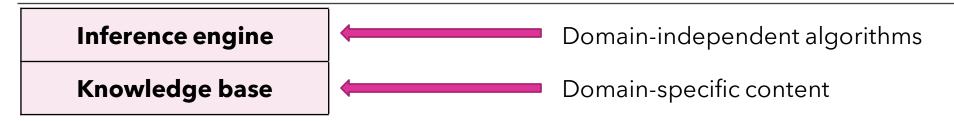
Logical Agents

Informatics 2D: Reasoning and Agents
Lecture 9

Adapted from slides provided by Dr Petros Papapanagiotou



Knowledge bases



Knowledge base (KB) = set of sentences in a formal language

Declarative approach to building an agent (or other system): • Tell it what it needs to know

Then it can Ask itself what to do - answers should follow from the KB

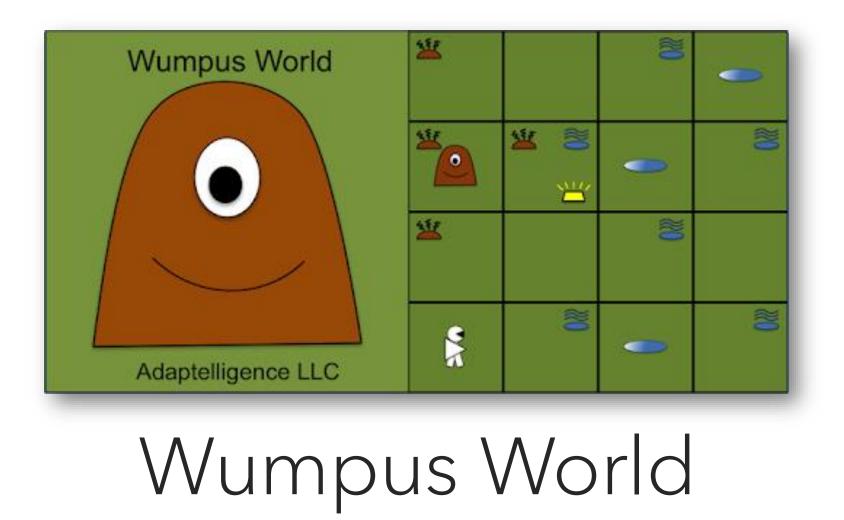
Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented

A simple knowledgebased agent

The agent must be able to:

- represent states, actions, etc.
- incorporate new percepts
- update internal representations of the world
- deduce hidden properties of the world
- deduce appropriate actions

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))$ TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action



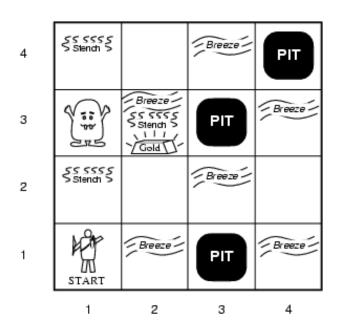
Wumpus World

Performance measure

• Climb with the gold +1000, death -1000, -1 per step, -10 for using the arrow

- Actuators: Left turn, Right turn, Forward, Grab, Shoot, Climb
- Environment: 4x4 grid, agent starts in [1,1]

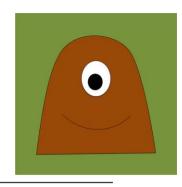
- Sensors: Stench, Breeze, Glitter, Bump, Scream
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pits are breezy
 - Glitter iff gold is in the same square
 - When the agent walks into a wall, it will perceive bump
 - When the wumpus is killed, it will scream



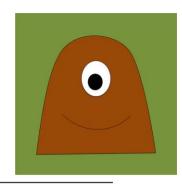
0

Observable	 No – only local perception
Deterministic	
Episodic	
Static	
Discrete	
Single-agent	

Observable	 No – only local perception
Deterministic	 Yes - outcomes exactly specified
Episodic	
Static	
Discrete	
Single-agent	



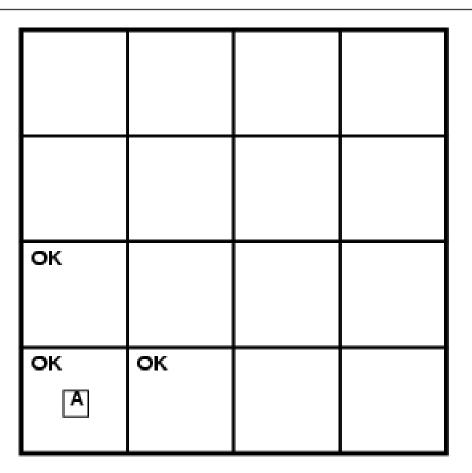
Observable	 No – only local perception
Deterministic	 Yes - outcomes exactly specified
Episodic	 No - sequential at the level of actions
Static	
Discrete	
Single-agent	

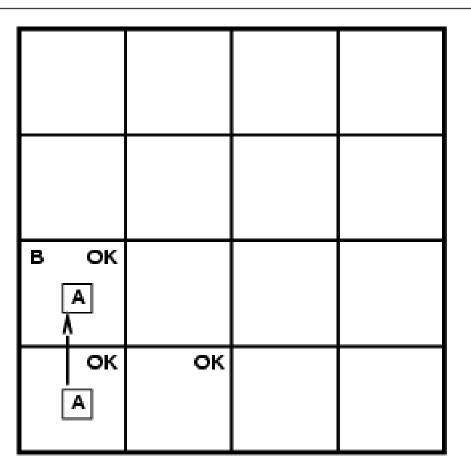


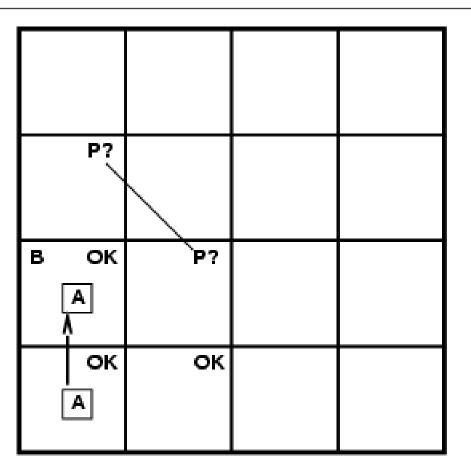
Observable	 No – only local perception
Deterministic	 Yes - outcomes exactly specified
Episodic	 No - sequential at the level of actions
Static	 Yes – Wumpus and Pits do not move
Discrete	
Single-agent	

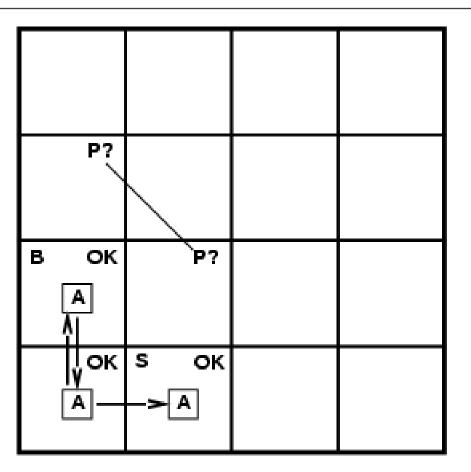
Observable	 No – only local perception 					
Deterministic	 Yes - outcomes exactly specified 					
Episodic	 No – sequential at the level of actions 					
Static	 Yes - Wumpus and Pits do not move 					
Discrete	• Yes					
Single-agent						

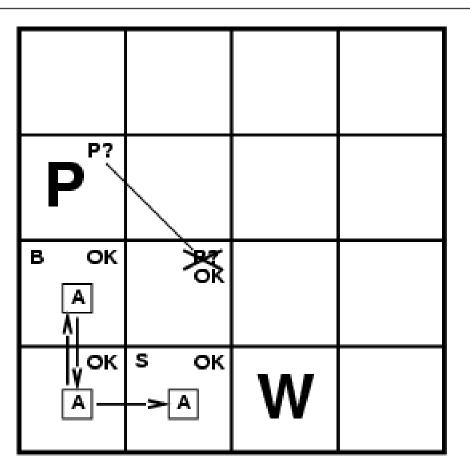
Observable	 No – only local perception 					
Deterministic	 Yes - outcomes exactly specified 					
Episodic	 No - sequential at the level of actions 					
Static	 Yes - Wumpus and Pits do not move 					
Discrete	• Yes					
Single-agent	 Yes - Wumpus is not moving 					

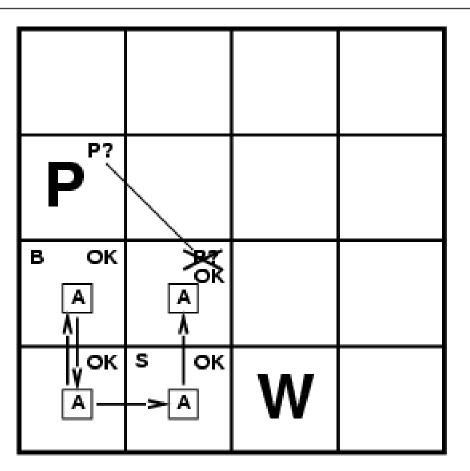


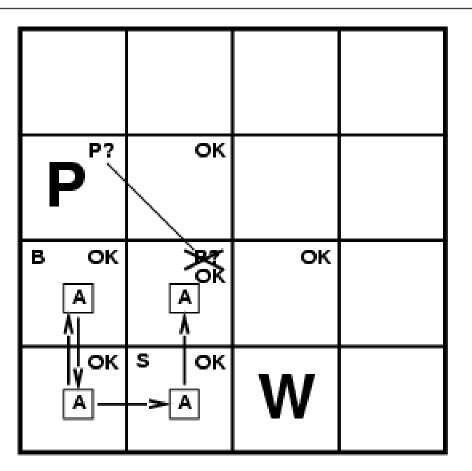


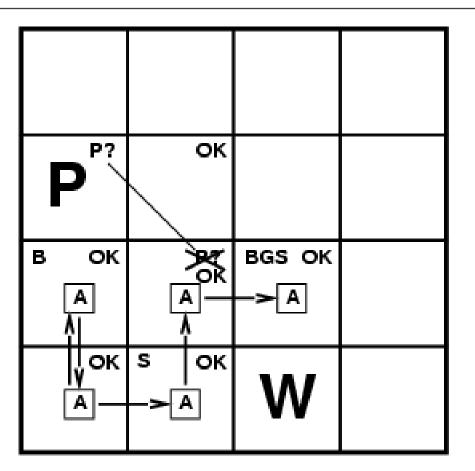


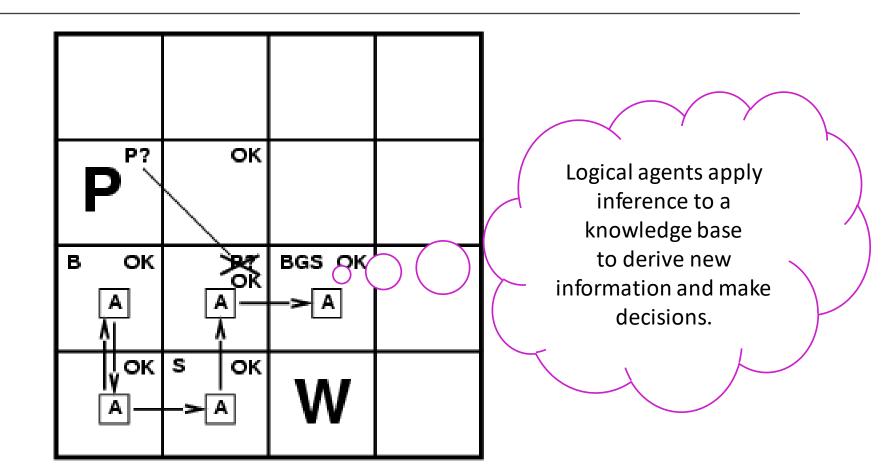


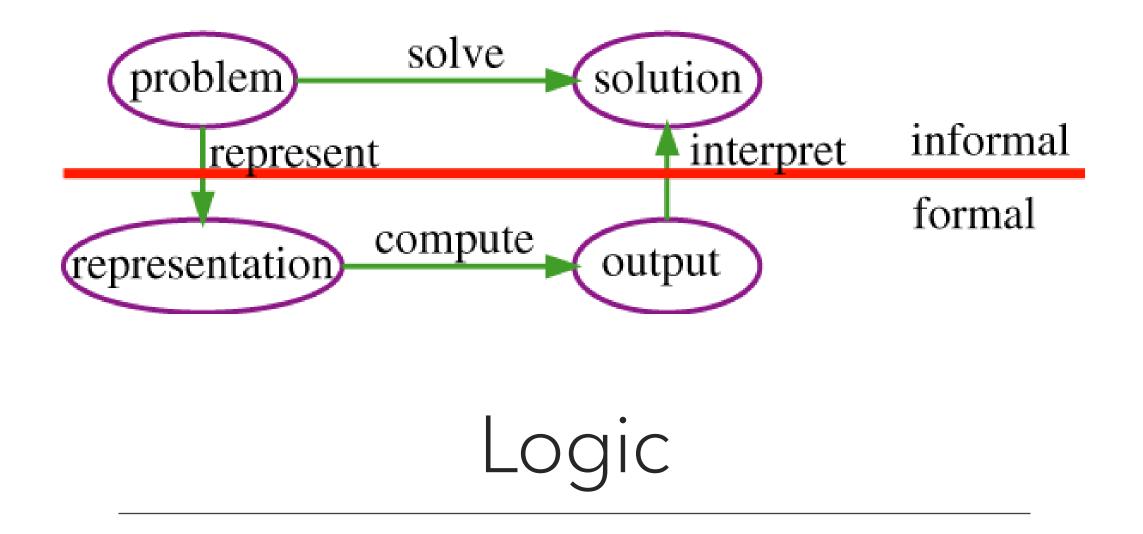












Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics defines the *meaning* of sentences; define truth of a sentence in a world

Syntax	ge of arithmetic Semantics			
$x+2 \ge y$ is a sentence	$x+2 \ge y$ is true iff the number $x+2$ is no less than the number y			
x2+y > {} is not a sentence	$x+2 \ge y$ is true in a world where $x = 7$, $y = 1$			
	$x+2 \ge y$ is false in a world where $x = 0, y = 6$			

ale a la seconda de Cantales de C

Entailment

Entailment means that one thing follows from another:

$\mathsf{KB}\vDash \alpha$

> Knowledge base KB entails sentence α iff α is true in all worlds where KB is true \circ e.g., x+y = 4 entails 4 = x+y

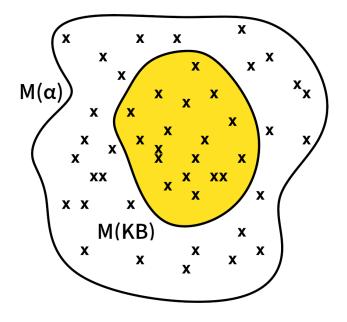
• e.g., the KB containing "Celtic won" and "Hearts won" entails "Either Celtic won or Hearts won"

> Entailment is a relationship between sentences (*syntax*) that is based on *semantics*

Models

Logicians typically think in terms of models that are formally structured worlds with respect to which truth can be evaluated

- \succ We say *m* is a model of a sentence α if α is true in *m*.
- $\succ M(\alpha)$ is the set of all models of α .
- \succ KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
- > The *stricter* an assertion, the fewer models it has.

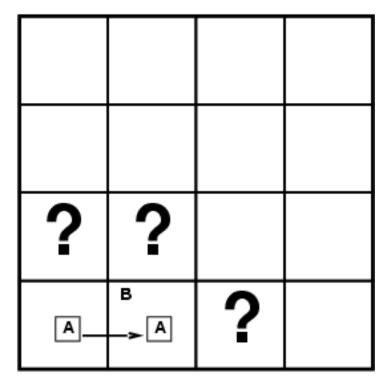


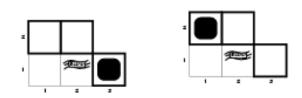
Entailment in the wumpus world

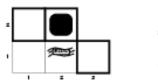
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

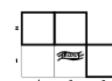
Possible models for KB assuming only pits

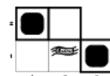
3 Boolean choices \rightarrow 8 possible models

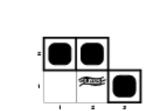


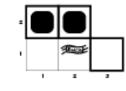


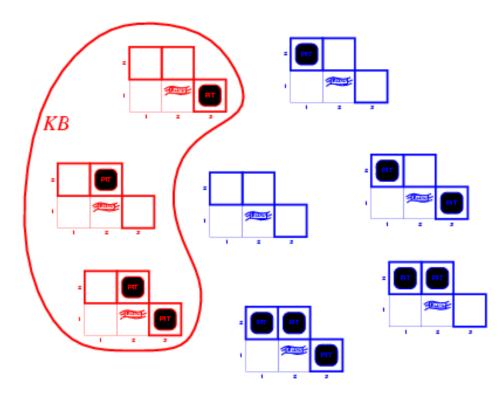




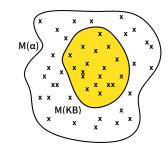


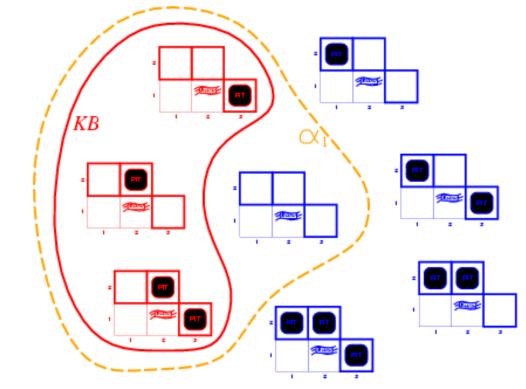






KB = wumpus-world rules + observations



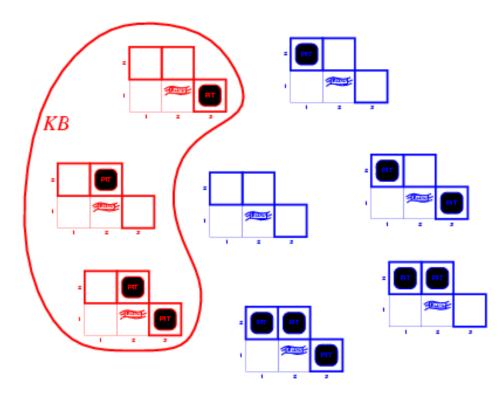


KB = wumpus-world rules + observations

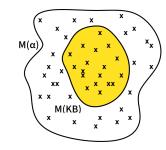
 $\alpha_1 = "[1,2]$ has no pit"

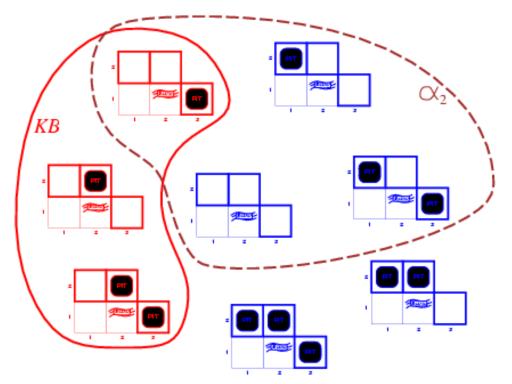
 $KB \models \alpha_1$, proved by model checking

 \circ In every model where KB is true, α_1 is also true



KB = wumpus-world rules + observations





KB = wumpus-world rules + observations

 α_2 = "[2,2] has no pit"

KB $\nvDash \alpha_{2}$, cannot be proved by model checking ◦ In some models in which KB is true, α₂ is false

Inference

 $KB \vdash_i \alpha$ = sentence α can be derived from KB by inference procedure *i*

Soundness

• *i* is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness

• *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Symbolic approach

Subsymbolic approach

Logic-based Approach

Knowledge Representation

propositional description logic FOL (or extension) Modal logic(temporal, epistemic, deontic)

Reasoning

deduction, abduction, induction fuzzy non-monotonic CLP, ASP BDI **Verification** Neuro-symbolic Computation

Logic as constraint

Differentiable reasoning

Neural probabilistic LP Machine Learning Deep learning Neural networks

Bayesian Inference

Graphical models

https://miro.medium.com/max/1400/1*IFbgqQ5UsCtmRrowjthNuA.png

Symbolic approach

Subsymbolic approach

Logic-based Approach

Knowledge Representation

 propositional
 description logic
 FOL (or extension)
 Modal logic(temporal, epistemic, deontic)

Reasoning

deduction, abduction, induction fuzzy non-monotonic CLP, ASP BDI

Verification

Neuro-symbolic Computation

Logic as constraint

Differentiable reasoning

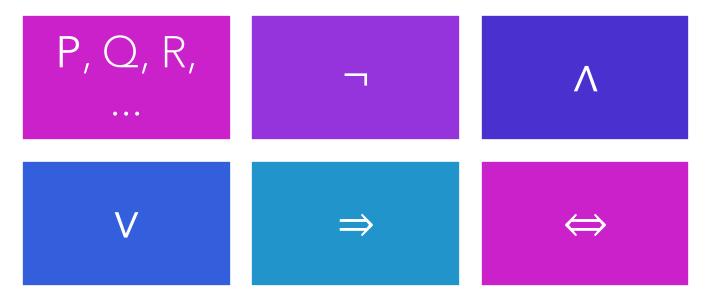
Neural probabilistic LP Machine Learning Deep learning Neural networks

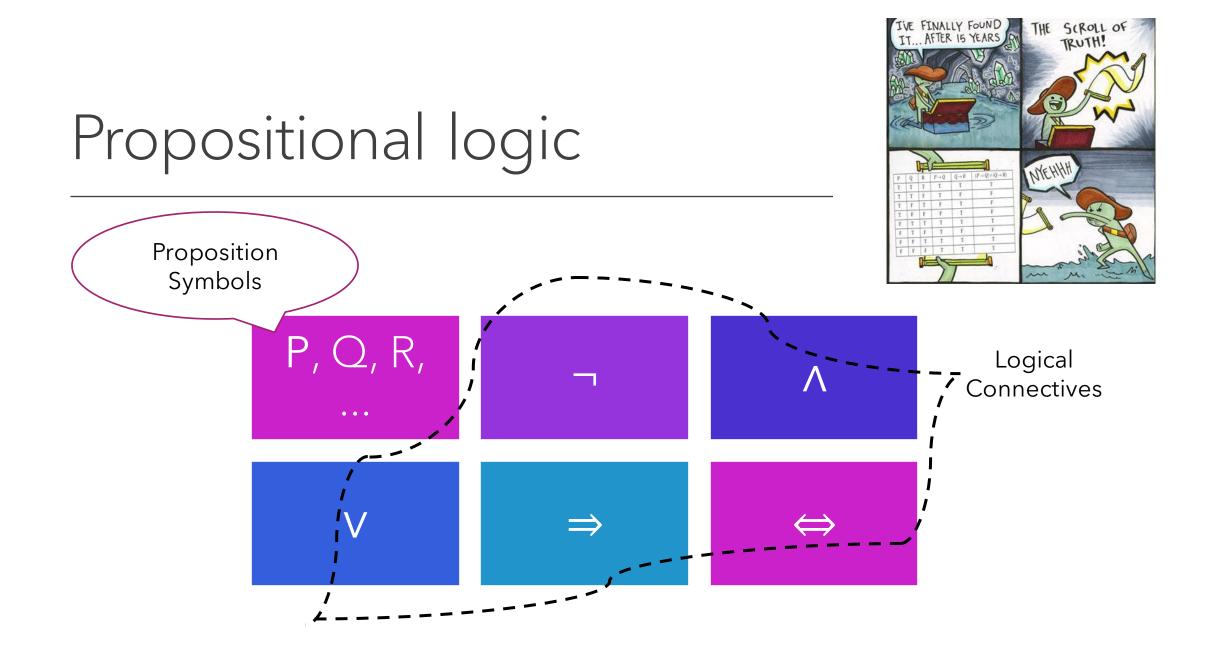
Bayesian Inference

Graphical models

https://miro.medium.com/max/1400/1*IFbgqQ5UsCtmRrowjthNuA.png

Propositional logic





Propositional logic: Syntax

Propositional logic is the simplest logic - illustrates basic ideas

- \circ The proposition symbols P1, Q; or True, False etc. are atomic sentences
- $\circ\,$ If S is a sentence, $\neg S$ is a sentence
- $\circ\,$ If S_1 and S_2 are sentences, $S_1\,{\color{black}{\wedge}}\, S_2$ is a sentence
- $\circ\,$ If S_1 and S_2 are sentences, $S_1\, {\mbox{V}}\, S_2$ is a sentence
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence

[negation] [conjunction] [disjunction] [implication] [biconditional]

Propositional logic: Semantics

> Each model specifies true/false for each proposition symbol

e.g., $P_{1,2}$ =false $P_{2,2}$ =true $P_{3,1}$ =false

With these symbols, 8 possible models
 can be enumerated automatically!

Propositional logic: Semantics

Rules for evaluating truth with respect to a model m:

 \neg S is true iff S is false

S1 \land S2 is true iff S1 is true and S2 is true

S1 V S2 is true iff S1 is true or S2 is true

 $S1 \Rightarrow S2$ is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false

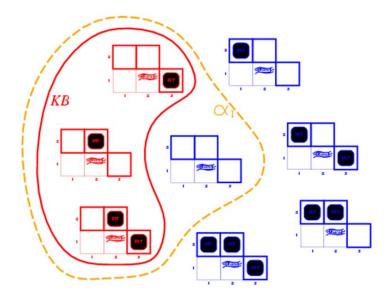
S1 \Leftrightarrow S2 is true iff S1 \Rightarrow S2 is true and S2 \Rightarrow S1 is true

Simple recursive process evaluates an arbitrary sentence:

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \ \Rightarrow \ Q$	$P \Leftrightarrow Q$	
false	false	true	false	false	true	true	
false	true	true	false	true	true	false	
true	false	false	false	true	false	false	
true	true	false	true	true	true	true	

Truth tables for connectives



Wumpus world sentences

- > Let $P_{i,j}$ be true if there is a pit in [i, j].
- > Let $B_{i,j}$ be true if there is a breeze in [i, j].

 $\neg P_{1,1}$ $\neg B_{1,1}$ $B_{2,1}$

Pits cause breezes in adjacent squares" B_{1,1} ⇔ (P_{1,2} ∨ P_{2,1})
 B_{2,1} ⇔ (P_{1,1} ∨ P_{2,2} ∨ P_{3,1})

α₁ = "[1,2] has no pit" ???

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	KB	α_1
false	false	true						
false	false	false	false	false	false	true	false	true
:	÷	:	÷	÷	÷	÷	:	÷
true	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
:	÷	:	:	÷	÷	÷	:	÷
true	false	false						

Truth tables for inference

function TT-ENTAILS?(KB, α) **returns** true or false **inputs**: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
```

function TT-CHECK-ALL($KB, \alpha, symbols, model$) returns true or false if EMPTY?(symbols) then if PL-TRUE?(KB, model) then return PL-TRUE?($\alpha, model$)

else return true // when KB is false, always return true

else do

```
P \leftarrow \text{FIRST}(symbols)

rest \leftarrow \text{REST}(symbols)

return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})

and

TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false\}))
```

Inference by enumeration

Depth-first enumeration of all models is sound and complete

> PL-TRUE?

- returns true if a sentence holds in a model
- For n symbols
 - Time complexity is O(2ⁿ)
 - Space complexity is O(n)

$$\begin{array}{ll} (\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\ (\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \lor \\ \neg(\neg \alpha) & \equiv \alpha & \text{double-negation elimination} \\ (\alpha \rightarrow \beta) & \equiv (\neg \alpha \lor \beta) & \text{contraposition} \\ (\alpha \rightarrow \beta) & \equiv (\neg \alpha \lor \beta) & \text{contraposition} \\ (\alpha \leftrightarrow \beta) & \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)) & \text{biconditional elimination} \\ \neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) & \text{de Morgan} \\ \neg(\alpha \land \beta) & \equiv (\neg \alpha \land \neg \beta) & \text{distributivity of } \land \text{ over } \lor \\ (\alpha \land (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land \end{array}$$

associativity of \land

associativity of \vee

contraposition

de Morgan

de Morgan

Two sentences are logically equivalent iff true in the same models:

 $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

Validity and Satisfiability

A sentence is **valid** if it is true in *all models*

• true, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the **Deduction Theorem**

• $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in some model

• e.g., A v B, C

A sentence is **unsatisfiable** if it is true in *no models*

• e.g., A∧¬A

Satisfiability is connected to inference via the following:

- $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
- prove α by reductio ad absurdum

Propositional Theorem Proving

APPLICATION OF INFERENCE RULES

- Legitimate (sound) generation of new sentences from old
- **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm!
- Typically require transformation of sentences into a **normal form**
- Example: resolution

MODEL CHECKING

- truth table enumeration
 - (always exponential in *n*)
- improved backtracking
 - e.g., DPLL
- heuristic search in model space
 - (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences