Resolution-
basead

Inference

Informatics 2D: Reasoning and Agents

Adapted from slides provided by Dr Petros Papapanagiotou

’1701001001-016,

. Generalized N
. - Modus Ponens .-~ - 7

Outline

Forward Chaining Backward Chaining Resolution

INF2D: REASONING AND AGENTS 2

Winnie-the-Pooh: A generous teddy bear

It is known in The Hundred-Acre

.g?{\-\ «. Wood that if someone who is very
SN | .
WL | R fond of food gives a treat to one of

‘\\\: /,’:‘, i, | their friends, they are really generous.
N

Eeyore, the sad donkey, has some
hunnythat he has received for his
birthday from Winnie-the-Pooh, who,
as we know, is very fond of food.

Prove that Winnie-the-Pooh is
| D generous.

INF2D: REASONING AND AGENTS 3

A Formalisation
IN
First-order Logic

INF2D: REASONING AND AGENTS

if someone who is very fond of food gives a treatto one of their friends, they
are really generous

e VeryFondOfFood(x) ATreat(y) A Friend(z) A Gives(x,y, z) =
Generous(x)

Eeyore(...) has some hunny

e 3x.Owns(Eeyore, x) A Hunny(x) or after El: Owns(Eeyore, H;) A
Hunny(H,)

that he has received for his birthday from Winnie-the-Pooh

e Hunny (x) A Owns(Eeyore,x) = Gives(Pooh, x, Eeyore)

Hunny is a treat.

e Hunny (x) = Treat(x)

Residents of the the Hundred-Acre Wood are friends.

e Resident(x, HundredAcreWood) = Friend (x)

Eeyoreis a resident of the the Hundred-Acre Wood.

e Resident (Eeyore, HundredAcreWood)

Poohis very fond of food.

e VeryFondOfFood(Pooh

Forward chaining

'Winnie-the-Pooh' Knowledge Base

VeryFondOfFood(x) A Treat(y) A Friend(z) A Gives(x,y,z) = Generous(x)
Owns(Eeyore,]) A Hunny(J)

Hunny(x) A Owns(Eeyore,x) = Gives(Pooh, x, Eeyore)
Hunny(x) = Treat(x)

Resident(x, HAW) = Friend (x)

Resident(Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS 6

Prove that Winnie-the-Pooh is generous

Forward chaining
orooft

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS 7

Prove that Winnie-the-Pooh is generous

Forward chaining
orooft

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)

Resident (x, HAW) = Friend (x)

VeryFondOfFood(Pooh)

VeryFondOfFood(Pooh) Hunny/(]) Owns(Eeyore,]) Resident(Eeyore,HAW)

INF2D: REASONING AND AGENTS 8

Prove that Winnie-the-Pooh is generous

Forward chaining
orooft

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)

Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Treat(])

VeryFondOfFood(Pooh)

Gives(Pooh,],Eeyore)

Friend(Eeyore)

Hunny(])

Owns(Eeyore,])

Resident(Eeyore,HAW)

Prove that Winnie-the-Pooh is generous

Forward chaining
orooft

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

VeryFondOfFood(Pooh)

Generous(Pooh)
Treat(]) Gives(Pooh,],Eeyore) Friend(Eeyore)
Hunny(]) Owns(Eeyore,]) Resident(Eeyore,HAW)

Forward
chaining
algorithm

INF2D: REASONING AND AGENTS

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
«, the query, an atomic sentence
local variables: new, the new sentences inferred on each iteration

repeat until new is empty
new «— { }
for each rule in KB do
(p1 A... A\ pn =)« STANDARDIZE-VARIABLES(rule)
for each 0 such that SUBST(0,p1 A ... A pp)=SUBST(0,p; A ... A D))
. / A
(1/ R SSZISST(Z;],C(];)I’ mena it 8E \ Pattern-matching
if ¢’ does not unify with some sentence already in KB or new then

add ¢’ to new \
O — UNIFY((]’,) Facts irrelevant to the goal can be generated

if ¢ is not fail then return ¢
add new to KB

return false

Properties of forward chaining

» Sound and complete for first-order definite clauses

o Definite clause = exactly one positive literal.

» Datalog = first-order definite clauses + no functions

o FC terminates for Datalog in finite number of iterations

» May not terminate in general if a is not entailed

» Entailment with definite clauses is semi-decidable

INF2D: REASONING AND AGENTS 12

—fficiency of forward chaining

» Incremental forward chaining: no need to match a rule on iteration k it
a premise wasn't added on iteration k-1

= match each rule whose premise contains a newly added positive literal

» Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts
o e.g., query Hunny(x) retrieves Hunny(J)

» Forward chaining is widely used in deductive databases

INF2D: REASONING AND AGENTS 13

—fficiency of forward chaining

for each 0 such that SUBST(0,p1 A ... A pn)=SUBST(O,p; A ... A p)
for some pi, ..., p), in KB

7)

> Finding all possible unifiers can be very expensive

Example:
Hunny(x) A Owns(Eeyore,x) = Gives(Pooh, x, Eeyore)

[¢]

Can find each object owned by Eeyore in constant time and then check if it is a jar of hunny.

[¢]

But what if Eeyore owns many objects but very few jars?

o

Conjunct Ordering: Better (cost-wise)to find all jars first and then check whetherthey are
owned by Eeyore.

[¢]

Optimal ordering is NP-hard. Heuristics available: e.g. MRV from CSP if each conjunctis
viewed as a constraint on its variables.

INF2D: REASONING AND AGENTS 14

Pattern matching and CSPs

@ Diff(WA, NT) A Diff(WA, SA) A Diff(NT, Q) A
() Diff(NT, SA) A Dif(Q, NSW) A Diff(Q, SA) A
(wa) ‘ DIff(NSW. V) A Diff(NSW, SA) A Diff(V, SA)
@‘@ — Colorable
o Diff(Red, Blue) Diff (Red, Green)
@ Diff(Green, Red) Diff(Green, Blue)
Diff(Blue, Red) Diff(Blue, Green)

> Every finite domain CSP can be expressed as a single definite clause + ground facts
» Colorable is inferred iff the CSP has a solution

» CSPs include 3SAT as a special case, hence matching is NP-hara

INF2D: REASONING AND AGENTS 15

Forward Chaining Backward Chaining

Backward chaining

INF2D: REASONING AND AGENTS 16

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat (y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)

VeryFondOfFood(x)

Treat(y)

Gives(x,y,z)

[x/Pooh]

Friend(z)

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat(y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)

VeryFondOfFood(Pooh)

Treat(y)

L]

Gives(x,y,z)

[x/Pooh]

Friend(z)

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat(y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)

VeryFondOfFood(Pooh)

Treat(y)

[]

Hunny(y)

Gives(x,y,z)

[x/Pooh]

Friend(z)

20

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat(y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny(J])

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)

VeryFondOfFood(Pooh)

Treat(y)

[]

Hunny(y)

[y/]]

Gives(x,y,z)

[x/Pooh, y/]]

Friend(z)

21

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat(y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh)
VeryFondOfFood(Pooh) Treat(y) Gives(Pooh,],z)
[] [z/Eeyore |
Hunny(y)| | Hunny(J)| |Owns(Eeyore,])
[y/]]

[x/Pooh,y/], z/Eeyore]

Friend(z)

22

Prove that Winnie-the-Pooh is generous

Backward
chaining proof

VeryFondOfFood(x) A Treat(y) A
Friend(z) A Gives(x,y, z) = Generous(x)

Owns(Eeyore,]) A Hunny())

Hunny(x) A Owns(Eeyore,x) =
Gives (Pooh,x,Eeyore)

Hunny(x) = Treat(x)
Resident (x, HAW) = Friend (x)
Resident (Eeyore, HAW')

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS

Generous(Pooh) [x/Pooh, y/], z/Eeyore |
VeryFondOfFood(Pooh) Treat(y) Gives(Pooh,],z) Friend(Eeyore)
[] [z/Eeyore |
Hunny(y)| | Hunny(J)| |Owns(Eeyore,])| |Resident(Eeyore,HAW)
[y/]] [] [] []

23

Fetch rules
that might

Backward
chaining
algorithm

A function that
returns multiple
times, each time

giving one possible

result

)

function FOL-BC-ASK(KB, query) returns a gen unity

return FOL-BC-OR(KB, query,{ })

— ()
%

generator FOL-BC-OR(KB, goal,) yields a substitdtion
O for each rule (lhs = rhs) in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs, Ths) < STANDARDIZE-VARIABLES((lhs, Ths))
for each 0’ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, 0)) do
yield ¢’

generator FOL-BC-AND(KDB, goals, 0)) yields a substitution

if 0 = failure then return
else if LENGTH(goals) = 0 then yield 0
else do

first,rest < FIRST(goals), REST(goals)

for each ¢ in FOL-BC-OR(KB, SUBST(#, first), 0) do

for each 0" in FOL-BC-AND(K B, rest,0") do
yield 0"

INF2D: REASONING AND AGENTS

24

Properties of backward chaining

» Depth-first recursive proof search: space is linear in size of proof

» Incomplete due to infinite loops

o partial fix by checking current goal against every goal on stack

» Inefficient due to repeated subgoals (both success and failure)

o fix using caching of previous results (extra space)

» Widely used for logic programming

INF2D: REASONING AND AGENTS 25

Forward Chaining Backward Chaining

Resolution

INF2D: REASONING AND AGENTS 26

Ground Binary Resolution

CvP DV =P
CvD

Soundness:
CvP iff aC=P
Dv-P iff P=D
o Therefore,~C =D
o Which is equivalentto Cv D

Note: if both C and D are empty then resolution deduces the empty clause, i.e. false.

INF2D: REASONING AND AGENTS 27

Non-Ground Binary Resolution

CVP DV-P’
(CvD)G6
where 8 is the mgu of P and P’

» The two clauses are assumed to be standardized apart so that they
share no variables.

Soundness: apply 0 to premises then appeal to ground binary
resolution.

Cov Po DO v —-P6
Cov Do

INF2D: REASONING AND AGENTS 28

—xample

—HasHunny(x) V Happy(x) HasHunny(Pooh)
Happy(Pooh)

with 8 = {x/Pooh}

INF2D: REASONING AND AGENTS 29

—actoring

CVP{V--VPp,

(CvP,)6
where 6 is the mgu of the P,

Soundness: by universal instantiation and deletion of duplicates.

INF2D: REASONING AND AGENTS 30

—ull Resolution

CVP{V--VP;;, DV—P{V---V—P},
(CVD)6

where ¢ is mgu of all P, and P,

Soundness: by combination of factoring and binary resolution.

To prove a: apply resolution steps to CNF(KB A —a);

o complete for FOL, if full resolution or binary resolution + factoring is used

INF2D: REASONING AND AGENTS 31

Conversion to CNF (1/2)

1 .(Vy.Animal(y) = Loves(,y)) = (Jy. Loves(y, x))

Eliminate &, = : replace a © B with (a = B)A(B = a) and a = B with =aV

e Vx.=(Vy. 2dnimal(y) V Loves(x,y)) vV (3y. Loves(y, x))

Move = inwards : use de Morgan’srules, =—a = @, =Vx.P = 3x. =P, =3Ix. P = Vx. =P

e Vx.(3y.a(—Animal(y) V Loves(x,y))) V (3y. Loves(y, x))
e Vx.(3y. ~n=Animal(y) A =Loves(x,y)) vV (3y. Loves(y, x))
e Vx.(3y. Animal(y) A =Loves(x,y)) V (3y. Loves(y, x))

Standardize variables apart: each quantifier should use a differentone

o Vx. (Ely. Animal(y) A =Loves (x, y)) V (3z. Loves(z, x))

INF2D: REASONING AND AGENTS 32

Conversion to CNF (2/2)

Vx. (Ely.Animal(y) A = Loves(x, y)) V (3z. Loves(z, x))

Skolemize: a more general form of existential instantiation

e Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables.

e Vx.(Animal(F (x)) A =Loves(x, F(x))) V Loves(G(x), x)

Drop universal quantifiers v

e (Animal(F (x)) A =Loves(x, F(x))) V Loves(G(x), x)

Create clauses: apply distributivity law (V over A) and flatten

. (Animal(F (x)) V Loves(G(x), x)) A (—lLoves(x, F (x)) V Loves(G(x), x))

INF2D: REASONING AND AGENTS

Resolution
algorithm

INF2D: REASONING AND AGENTS

function PL-RESOLUTION(K B,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

clauses «— the set of clauses in the CNF representation of KB A -«
new « { }
loop do
for each pair of clauses C;, C; in clauses do returns the set of all possible clauses
resolvents +— PL-RESOLVE(C;,C;) +— obtained by resolving its two inputs
if resolvents contains the empty clause then return true
new «— new U resolvents
if new C clauses then return false
clauses «+— clauses U new

34

'Winnie-the-Pooh' Knowledge Base

VeryFondOfFood(x) A Treat(y) A Friend(z) A Gives(x,y,z) = Generous(x)
Owns(Eeyore,]) A Hunny(J)

Hunny(x) A Owns(Eeyore,x) = Gives(Pooh, x, Eeyore)
Hunny(x) = Treat(x)

Resident(x, HAW) = Friend (x)

Resident(Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS 35

'Winnie-the-Pooh' Knowledge Base

—VeryFondOfFood(x) V —Treat(y) V —~Friend(z) V =Gives(x,y,z) V Generous(x)
Owns(Eeyore,]) Hunny(J)

—Hunny(x) Vv -0Owns(Eeyore, x) V Gives(Pooh, x, Eeyore)
—Hunny(x) V Treat(x)

—Resident(x, HAW) V Friend (x)

Resident(Eeyore, HAW)

VeryFondOfFood(Pooh)

INF2D: REASONING AND AGENTS 36

Prove that Winnie-the-Pooh is generous

Resolution proof

INF2D: REASONING AND AGENTS

—VeryFondOfFood(x) V =Treat(y) V =Friend(z) v =Gives(x,y,z) V Generous(x) —Generous(Pooh)
VeryFondOfFood (Pooh) —VeryFondOfFood(Pooh) v —Treat(y) v —Friend(z) v =Gives(Pooh,y,z)
_ |
—Hunny(x) v Treat(x) —Treat(y) V =Friend(z) v =Gives(Pooh,y,z)
|
Hunny(J) —Hunny(y) vV =Friend(z) v =Gives(Pooh,y,z)
I
—Hunny(x) v -Owns(Eeyore,x) Vv Gives(Pooh,x,Eeyore) —Friend(z) v ~Gives(Pooh,],z)
|
Hunny(]) —Hunny(]) v ~Owns(Eeyore,]) V —~Friend(Eeyore)
Owns(Eeyore,]) —-0wns(Eeyore,]) V —Friend(Eeyore)
—Resident(x,HundredAcreWood) V Friend(x) —Friend(Eeyore)

|

Resident(Eeyore,HundredAcreWood) —Resident(Eeyore,HundredAcreWood)

L

37

Why?

» Winnie-the-Pooh is generous!
» Fundamentals of reasoning in FOL

» Automated logic-based reasoning

» Proof search

——

Propositionalization Generalized Unification .
P Modus Ponens First-order

S—

Inference
Forward Chaining Backward Chaining Resolution

=

INF2D: REASONING AND AGENTS

	Default Section
	Slide 1: Resolution-based Inference
	Slide 2: Outline
	Slide 3: Winnie-the-Pooh: A generous teddy bear
	Slide 4: A Formalisation in First-order Logic

	Forward chaining
	Slide 5: Forward chaining
	Slide 6: ‘Winnie-the-Pooh’ Knowledge Base
	Slide 7: Forward chaining proof
	Slide 8: Forward chaining proof
	Slide 9: Forward chaining proof
	Slide 10: Forward chaining proof
	Slide 11: Forward chaining algorithm
	Slide 12: Properties of forward chaining
	Slide 13: Efficiency of forward chaining
	Slide 14: Efficiency of forward chaining
	Slide 15: Pattern matching and CSPs

	Backward chaining
	Slide 16: Backward chaining
	Slide 17: Backward chaining proof
	Slide 18: Backward chaining proof
	Slide 19: Backward chaining proof
	Slide 20: Backward chaining proof
	Slide 21: Backward chaining proof
	Slide 22: Backward chaining proof
	Slide 23: Backward chaining proof
	Slide 24: Backward chaining algorithm
	Slide 25: Properties of backward chaining

	Resolution
	Slide 26: Resolution
	Slide 27: Ground Binary Resolution
	Slide 28: Non-Ground Binary Resolution
	Slide 29: Example
	Slide 30: Factoring
	Slide 31: Full Resolution
	Slide 32: Conversion to CNF (1/2)
	Slide 33: Conversion to CNF (2/2)
	Slide 34: Resolution algorithm
	Slide 35: ‘Winnie-the-Pooh’ Knowledge Base
	Slide 36: ‘Winnie-the-Pooh’ Knowledge Base
	Slide 37: Resolution proof
	Slide 38: Why?

