Situation Calculus

Informatics 2D: Reasoning and Agents

Adapted from slides provided by Michael Rovatsos

Using Logic to Plan

- We need ways of:
 - representing the world.
 - representing the goal.
 - representing how actions change the world.
- We haven't said much about the last.
 - Difficulty: After an action, new things are true, and some previously true facts are no longer true.

Situations

- Introduce a notion of *situations*, which are logical terms
 - Consist of initial situation (usually called S_0) and all situations generated by applying an action to a situation.
- State facts about situations.
 - By relativizing predications to situations.
 - E.g., instead of saying just On(A,B), say (somehow) On(A,B) in situation S₀
- Actions are thus
 - performed in a situation, and
 - produce new situations with new facts.
 - Examples: Forward and Turn(Right)

Representing Predications Relative to a Situation

- Can add an argument for a situation to each predicate that can change.
 - E.g., instead of On(A,B), write On(A,B,S₀)
- Alternatively, introduce a predicate Holds and turn On, etc., into functions:
 - E.g., **Holds(On(A,B),S₀)**
 - What do things like **On(A,B)** now mean?
 - Either a category of situations, in which **A** is on **B**, or a set of those situations.

How This Will Work

- Before some action, we might have in our KB: On(A,B,S₀) On(B,Table,S₀)
- After an action that moves A to the table, say, we add Clear(B,S₁) On(A,Table,S₁)
- All these propositions are true. We have dealt with the issue of change, by keeping track of what is true when.

Α

B

Same Thing, Slightly Different Notation

Before : Holds(On(A,B),S₀) Holds(On(B,Table),S₀)

After, add

. . .

Holds(Clear(B),S₁) Holds(On(A,Table),S₁)

Representing Actions

- Need to represent:
 - Results of doing an action
 - Conditions that need to be in place to perform an action.
- For convenience, we will define *functions* to abbreviate actions:
 - E.g., **Move(A,B)** denotes the *action type* of moving **A** onto **B**.
 - These are action *types*, because actions themselves are specific to time, etc.
- Now, introduce a *function* **Result**, designating "the situation resulting from doing an action type in some situation".
 - E.g., Result(Move(A,B),S₀) means "the situation resulting from doing an action of type Move(A,B) in situation S₀".

How This Works

• Keep in mind that things like

Result(Move(A,B),S₀)

are terms, and denote situations.

They can appear anywhere we would expect a situation.

• So we can say things like

S₁=Result(Move(A,B),S₀), On(A,B,Result(Move(A,B),S₀)), On(A,B,S₁), etc. (Alternatively, Holds(On(A,B),Result(Move(A,B),S₀)), etc.)

Axiomatizing Actions

- Now, we can describe the results of actions, together with their preconditions.
- E.g., 'If nothing is on x and y, then one can move x to on top of y, in which case x will then be on y.'

```
\forallx,y,s Clear(x,s) \land Clear(y,s)
```

```
\Rightarrow On(x,y,Result(Move(x,y),s))
```

• Alternatively:

```
\forall x,y,s
Holds(Clear(x),s) \land Holds(Clear(y),s)
\Rightarrow Holds(On(x,y), Result(Move(x,y),s))
```

- This is an effect axiom.
 - It includes a precondition as well.

Situation Calculus

- This approach is called the *situation calculus*.
- We axiomatize all our actions, then use a general theorem prover to prove that a situation exists in which our goal is true.
- The actions in the proof would comprise our plan.

A Very Simple Example

. KB:

 $\begin{array}{c|c} On(A,Table,S_0) & & B \\ On(B,C,S_0) & & A & C \\ On(C,Table,S_0) & & Table \\ Clear(A,S_0) & & Table \\ clear(B,S_0) & & & \\ and axioms about actions, etc. \end{array}$

Goal:

∃s'. On(A,B,s')

 S_0

What happens?

- We try to prove On(A,B,s') for some s'
 - Find axiom

 \forall x,y,s. Clear(x,s) \land Clear(y,s)

 \Rightarrow On(x,y,Result(Move(x,y),s))

- By chaining, e.g., goal would be true if we could prove Clear(A,s) Clear(B,s) by backward chaining.
- But both are true in S₀, so we can conclude On(A,B,Result(Move(A,B),S₀))
- We are done!
- We look in the proof and see only one action, **Move(A,B)**, which is executed in situation **S**₀, so this is our plan.

Tougher Example: Same Initial World, Harder Goal

. KB:

On(A,Table,S₀) On(B,C,S₀) On(C,Table,S₀) Clear(A,S₀) Clear(B,S₀)

Clear(B,S₀) and axioms about actions, etc.

Goal:

∃s' On(A,B,s') ∧ On(B,C,s')

(Intuitively, really not harder: B already on C, and we just showed how to make A on B.)

With Goal **On(A,B,s')** \land **On(B,C,s')**

- Suppose we try to prove the first subgoal, **On(A,B,s')**.
 - Use same axiom

 \forall x,y,s. Clear(x,s) \land Clear(y,s)

- \Rightarrow On(x,y, Result(Move(x,y),s))
- Again, by chaining, we can conclude **On(A,B,Result(Move(A,B),S₀))**.
- Abbreviating **Result(Move(A,B),S₀)** as **S₁**, we have **On(A,B,S₁)**.
- Substituting for s' in our other subgoal makes that On(B,C,S₁). If this is true, we're done.
- But we have no reason to believe this is true!
- Sure, On(B,C,S₀), but how does the planner know this is still true, i.e., On(B,C,S₁)?
- In fact, it doesn't, so it fails to find an answer!

The Frame Problem

- We have failed to express the fact that everything that isn't changed by an action stays the same.
- Can fix by adding *frame axioms*. E.g.:
 - $\forall x,y,z,s.$ Clear(x,s) \Rightarrow Clear(x, Result(Paint(x,y),s))
- There are *lots* of these!
- Is this a big problem?

Better Frame Axioms

• Can fix with neater formulation:

```
\forall x,y,s,a.
On(x,y,s) \land (\forall z. a=Move(x,z) \Rightarrow y=z)
\Rightarrow On(x,y,Result(a,s))
```

- Can combine with effect axioms to get *successor-state axioms*:
 - ∀x,y,s,a.

 $On(x,y,Result(a,s)) \Leftrightarrow$

On(x,y,s) \land ($\forall z$. a=Move(x,z) \Rightarrow y=z)

 \vee (Clear(x,s) \wedge Clear(y,s) \wedge a=Move(x,y))

How Does This Help Our Example?

• We want to prove

On(B,C,Result(Move(A,B),S₀)) given that On(B,C,S₀)

Axiom says

 $\forall x,y,s,a. On(x,y,Result(a,s)) \Leftrightarrow$

On(x,y,s) \land ($\forall z$. a=Move(x,z) \Rightarrow y=z)

 \vee (Clear(x,s) \wedge Clear(y,s) \wedge a=Move(x,y))

So need to show

 $On(B,C,S_0) \land (\forall z. Move(A,B)=Move(B,z) \Rightarrow C=z)$ is true, which is easy

- The first conjunct is in the KB.
- The second one is true since actions are the same only if they have the same name and involve the exact same objects i.e.

$$A(x_1, ..., x_m) = A(y_1, ..., y_m)$$
 iff $x_1 = y_1 \land ... \land x_m = y_m$

so Move(A,B)=Move(B,z) is false.

Note: Another assumption in KB: $A(x_1, ..., x_m) \neq B(y_1, ..., y_n)$

For Refutation Theorem Proving: (Dual) Skolemisation

- Suppose $\forall x. \exists y. G(x,y)$ is goal in resolution refutation.
- So, we need to negate the goal:

 $\neg \forall x. \exists y. G(x,y) \equiv \exists x. \forall y. \neg G(x,y)$

• Then skolemise (i.e drop existential quantifier):

¬G(X₀,y)

- Intuition:
 - y is to be unified to construct *witness*.
 - X₀ must not be instantiated.
- Similar story for GMP, but goal not negated, i.e. G(X₀,y), for some y, is used as the goal.

KB and Axioms as Clauses

Constants: A, B, C, S0 Variables: a, x, y, s

Initial State On(A,Table,S0) On(B,C,S0) On(C,Table,S0) Clear(A,S0) Clear(B,S0)

Goal

 $\neg On(A,B,s') \lor \neg On(B,C,s')$

Effect Axiom ¬Clear(x,s) v ¬Clear(y,s) v On(x,y, Result(Move(x,y),s))

Frame Axioms $\neg On(x,y,s) \lor a = Move(x,Z(x,y,s,a)) \lor On(x,y,Result(a,s))$ $\neg On(x,y,s) \lor \neg y = Z(x,y,s,a) \lor On(x,y,Result(a,s))$

Unique Action Axioms: \neg Move(A,B)=Move(B,z), etc Unique Name Axiom: disequality for every pair of constants in KB

Resolution Refutation

Frame problem partially solved

- This solves the representational part of the frame problem.
- Still have to compute that everything that was true that wasn't changed is still true. Inefficient (as is general theorem proving).
- Solution: Special purpose representations, special purpose algorithms, called *Planners*.

