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Using Logic to Plan

• We need ways of:
• representing the world.
• representing the goal.
• representing how actions change the world.

• We haven't said much about the last.
• Difficulty: After an action, new things are true, and 

some previously true facts are no longer true.
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Situations

• Introduce a notion of situations, which are logical terms

– Consist of initial situation (usually called S0) and all situations 
generated by applying an action to a situation.

• State facts about situations.

– By relativizing predications to situations.

– E.g., instead of saying just On(A,B), say (somehow) On(A,B) 
in situation S0

• Actions are thus

– performed in a situation, and

– produce new situations with new facts.

– Examples: Forward and Turn(Right)
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Representing Predications Relative to a 
Situation

• Can add an argument for a situation to each predicate that can 
change.

• E.g., instead of On(A,B), write On(A,B,S0)

• Alternatively, introduce a predicate Holds and turn On, etc., into 
functions:

• E.g., Holds(On(A,B),S0)

• What do things like On(A,B) now mean?

• Either a category of situations, in which A is on B, or a set 
of those situations.
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How This Will Work

• Before some action, we might have in our KB:
On(A,B,S0)
On(B,Table,S0)
....

• After an action that moves A to the table, say, we add
Clear(B,S1)
On(A,Table,S1)

• All these propositions are true. We have dealt with the 
issue of change, by keeping track of what is true when.
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Same Thing, Slightly Different 
Notation

• Before :
Holds(On(A,B),S0)
Holds(On(B,Table),S0)
...

• After, add
Holds(Clear(B),S1)
Holds(On(A,Table),S1)
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Representing Actions

• Need to represent:
• Results of doing an action
• Conditions that need to be in place to perform an action.

• For convenience, we will define functions to abbreviate actions:
• E.g., Move(A,B) denotes the action type of moving A onto B.
• These are action types, because actions themselves are specific 

to time, etc.
• Now, introduce a function Result, designating “the situation resulting 

from doing an action type in some situation”.
• E.g., Result(Move(A,B),S0) means “the situation resulting from 

doing an action of type Move(A,B) in situation S0”.
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How This Works

• Keep in mind that things like
 Result(Move(A,B),S0)
are terms, and denote situations.
They can appear anywhere we would expect a situation.

• So we can say things like
 S1=Result(Move(A,B),S0),
 On(A,B,Result(Move(A,B),S0)), 
 On(A,B,S1), etc. 
(Alternatively, Holds(On(A,B),Result(Move(A,B),S0)), etc.)
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Axiomatizing Actions

• Now, we can describe the results of actions, together with their 
preconditions.

• E.g., 'If nothing is on x and y, then one can move x to on top of y, in 
which case x will then be on y.'

x,y,s Clear(x,s)  Clear(y,s)
  On(x,y,Result(Move(x,y),s))

• Alternatively:
x,y,s
 Holds(Clear(x),s)  Holds(Clear(y),s)
  Holds(On(x,y), Result(Move(x,y),s))

• This is an effect axiom.
• It includes a precondition as well.
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Situation Calculus

• This approach is called the situation calculus.
• We axiomatize all our actions, then use a general 

theorem prover to prove that a situation exists in which 
our goal is true.

• The actions in the proof would comprise our plan.
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A Very Simple Example
• KB:

On(A,Table,S0)
On(B,C,S0)
On(C,Table,S0)
Clear(A,S0)
Clear(B,S0)
and axioms about actions, etc.

• Goal:
s'. On(A,B,s')
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What happens?

• We try to prove On(A,B,s') for some s’
• Find axiom
   x,y,s. Clear(x,s)  Clear(y,s)

  On(x,y,Result(Move(x,y),s))
• By chaining, e.g., goal would be true if we could prove 

Clear(A,s)   Clear(B,s) by backward chaining.
• But both are true in S0, so we can 

conclude  On(A,B,Result(Move(A,B),S0))
• We are done!
• We look in the proof and see only one action, Move(A,B), which is 

executed in situation S0, so this is our plan.
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Tougher Example: Same Initial 
World, Harder Goal
• KB:

On(A,Table,S0)
On(B,C,S0)
On(C,Table,S0)
Clear(A,S0)
Clear(B,S0)
and axioms about actions, etc.

❑ Goal:
s' On(A,B,s')  On(B,C,s')

   (Intuitively, really not harder: B already on C, and we just  showed 
how to make A on B.)

Informatics 2D

A

B

C

Table

S0

13



With Goal On(A,B,s')  On(B,C,s')

• Suppose we try to prove the first subgoal, On(A,B,s').
• Use same axiom

 x,y,s. Clear(x,s)  Clear(y,s)
  On(x,y, Result(Move(x,y),s))

• Again, by chaining, we can conclude  On(A,B,Result(Move(A,B),S0)).
• Abbreviating Result(Move(A,B),S0) as S1, we have  On(A,B,S1).

• Substituting for s' in our other subgoal makes that On(B,C,S1).  If this is 
true, we're done.

• But we have no reason to believe this is true!
• Sure, On(B,C,S0), but how does the planner know this is still true, i.e., 

On(B,C,S1)?
• In fact, it doesn't, so it fails to find an answer!
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The Frame Problem

• We have failed to express the fact that everything that 
isn't changed by an action stays the same.

• Can fix by adding frame axioms.  E.g.:
x,y,z,s.
Clear(x,s)  Clear(x, Result(Paint(x,y),s))
...

• There are lots of these!
• Is this a big problem?
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Better Frame Axioms

• Can fix with neater formulation:
x,y,s,a.
On(x,y,s)  (z. a=Move(x,z)  y=z)

  On(x,y,Result(a,s))
• Can combine with effect axioms to get successor-state axioms:

x,y,s,a.
On(x,y,Result(a,s)) 

 On(x,y,s)  (z. a=Move(x,z)  y=z)
   (Clear(x,s)  Clear(y,s)  a=Move(x,y))
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How Does This Help Our Example?
• We want to prove

 On(B,C,Result(Move(A,B),S0)) given that On(B,C,S0)
Axiom says 
x,y,s,a. On(x,y,Result(a,s))    
            On(x,y,s)  (z. a=Move(x,z)  y=z)

   (Clear(x,s)  Clear(y,s)  a=Move(x,y))

• So need to show

 On(B,C,S0)  (z. Move(A,B)=Move(B,z)  C=z) is true, which is easy
• The first conjunct is in the KB.

• The second one is true since actions are the same only if they have the same name and 
involve the exact same objects i.e.

  A(x1, …, xm) = A(y1, …, ym) iff x1 = y1  …  xm = ym

      so Move(A,B)=Move(B,z) is false.

Note: Another assumption in KB:     A(x1, …, xm)  B(y1, …, yn) 
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For Refutation Theorem Proving: (Dual) 
Skolemisation

• Suppose x. y. G(x,y) is goal in resolution refutation.

• So, we need to negate the goal:

  ¬ x. y. G(x,y) ≡ x. y. ¬G(x,y)

• Then skolemise (i.e drop existential quantifier):

    ¬G(X0,y)

• Intuition:
• y is to be unified to construct witness.
• X0 must not be instantiated.

• Similar story for GMP, but goal not negated, i.e. G(X0,y), for some y, 
is used as the goal.
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KB and Axioms as Clauses
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Initial State

On(A,Table,S0)

On(B,C,S0)

On(C,Table,S0)

Clear(A,S0)

Clear(B,S0)

Frame Axioms

¬On(x,y,s)  a=Move(x,Z(x,y,s,a))  On(x,y,Result(a,s))

¬On(x,y,s)  ¬y=Z(x,y,s,a)  On(x,y,Result(a,s))

Goal 
     ¬On(A,B,s')  ¬On(B,C,s')

Effect Axiom 

¬Clear(x,s)  ¬Clear(y,s) 

    On(x,y, Result(Move(x,y),s))

Unique Action Axioms: ¬ Move(A,B)=Move(B,z), etc

Unique Name Axiom: disequality for every pair of constants in KB

Constants: A, B, C, S0

Variables: a, x, y, s

Skolem function
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Resolution Refutation
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¬Clear(B,S0)  

¬On(B,C, Result(Move(A,B),S0))

¬On(B,C, Result(Move(A,B),S0))

¬On(A,B,s')  ¬On(B,C,s')
¬Clear(x,s)  ¬Clear(y,s)  

    On(x,y, Result(Move(x,y),s))

¬Clear(A,s)  ¬Clear(B,s) 

¬On(B,C, Result(Move(A,B),s))

Clear(A,S0)

Clear(B,S0)

¬On(x,y,s)  

a=Move(x,Z(x,y,s,a))  

On(x,y,Result(a,s))

¬On(B,C,S0)  

Move(A,B)=Move(B,Z(x,y,s,a))

On(B,C,S0)¬On(B,C,S0) 

¬Move(A,x) = Move(B,z)  
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Frame problem partially solved

• This solves the representational part of the frame 
problem.

• Still have to compute that everything that was true that 
wasn't changed is still true.  Inefficient (as is general 
theorem proving).

• Solution:  Special purpose representations, special 
purpose algorithms, called Planners.
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Summary
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PLANNING SITUATIONS FRAME 
PROBLEM
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