Situation Calculus

Informatics 2D: Reasoning and Agents
Adapted from slides provided by Michael Rovatsos

Using Logic to Plan

- We need ways of:
- representingthe world.
- representing the goal.
- representinghow actions change the world.
- We haven't said much about the last.
- Difficulty: After an action, new things are true, and some previously true facts are no longer true.

Situations

- Introduce a notion of situations, which are logical terms
- Consist of initial situation (usually called S_{0}) and all situations generated by applying an action to a situation.
- State facts about situations.
- By relativizing predications to situations.
- E.g., instead of saying just On(A,B), say (somehow) On(A,B) in situation $\mathbf{S}_{\mathbf{0}}$
- Actions are thus
- performed in a situation, and
- produce new situations with new facts.
- Examples: Forward and Turn(Right)

Representing Predications Relative to a Situation

- Can add an argument for a situation to each predicate that can change.
- E.g., instead of $\operatorname{On}(\mathbf{A}, \mathbf{B})$, write $\operatorname{On}\left(\mathbf{A}, \mathbf{B}, \mathbf{S}_{0}\right)$
- Alternatively, introduce a predicate Holds and turn On, etc., into functions:
- E.g., Holds(On(A,B), \mathbf{S}_{0})
- What do things like $\operatorname{On}(\mathbf{A}, \mathrm{B})$ now mean?
- Either a category of situations, in which \mathbf{A} is on \mathbf{B}, or a set of those situations.

How This Will Work

- Before some action, we might have in our KB:

On(A,B,S $)^{\text {) }}$
On(B,Table, \mathbf{S}_{0})

- After an action that moves A to the table, say, we add

Clear(B, \mathbf{S}_{1})
On(A,Table, \mathbf{S}_{1})

- All these propositions are true. We have dealt with the issue of change, by keeping track of what is true when.

Same Thing, Slightly Different Notation

. Before :
Holds(On(A,B), So
Holds(On(B,Table), \mathbf{S}_{0})

. After, add
Holds(Clear(B), \mathbf{S}_{1})
Holds(On(A,Table), \mathbf{S}_{1})

RepresentingActions

- Need to represent:
- Results of doing an action
- Conditions that need to be in place to perform an action.
- For convenience, we will define functions to abbreviate actions:
- E.g., Move(A,B) denotes the action type of moving A onto B.
- These are action types, because actions themselves are specific to time, etc.
- Now, introduce a function Result, designating "the situation resulting from doing an action type in some situation".
- E.g., Result(Move(A,B), $\mathbf{S}_{\mathbf{0}}$) means "the situation resulting from doing an action of type $\operatorname{Move}(\mathbf{A}, \mathbf{B})$ in situation $\mathbf{S}_{\mathbf{0}}$ ".

How This Works

- Keep in mind that things like

Result(Move(A,B), \mathbf{S}_{0})
are terms, and denote situations.
They can appear anywhere we would expect a situation.

- So we can say things like
$S_{1}=\operatorname{Result}\left(\operatorname{Move}(A, B), S_{0}\right)$,
On(A,B,Result(Move(A,B), $\left.S_{0}\right)$),
On(A,B, $\left.S_{1}\right)$, etc.
(Alternatively, Holds(On(A,B),Result(Move(A,B), $\left.\mathbf{S}_{0}\right)$), etc.)

Axiomatizing Actions

- Now, we can describe the results of actions, together with their preconditions.
- E.g., 'If nothing is on x and y, then one can move x to on top of y, in which case x will then be on y. '
$\forall x, y, s$ Clear($x, s) \wedge \operatorname{Clear}(y, s)$

$$
\Rightarrow \text { On(x,y,Result(Move(x,y),s)) }
$$

- Alternatively:
$\forall \mathbf{x , y}, \mathbf{s}$
Holds(Clear(x),s) ^ Holds(Clear(y),s)
\Rightarrow Holds(On(x,y), Result(Move(x,y),s))
- This is an effect axiom.
- It includes a precondition as well.

Situation Calculus

- This approach is called the situation calculus.
- We axiomatize all our actions, then use a general theorem prover to prove that a situation exists in which our goal is true.
- The actions in the proof would comprise our plan.

A Very Simple Example

KB:
On(A,Table, \mathbf{S}_{0})
On(B,C,So)
On(C,Table, \mathbf{S}_{0})
Clear(A, \mathbf{S}_{0})
Clear(B, \mathbf{S}_{0})

and axioms about actions, etc.
Goal:
$\exists \mathrm{s}$. On(A,B,s')

What happens?

- We try to prove On(A,B,s') for some s'
- Find axiom
$\forall \mathrm{x}, \mathrm{y}, \mathrm{s} . \operatorname{Clear}(\mathrm{x}, \mathrm{s}) \wedge \operatorname{Clear}(\mathrm{y}, \mathrm{s})$
\Rightarrow On(x,y,Result(Move(x,y),s))
- By chaining, e.g., goal would be true if we could prove Clear(A,s) ^Clear(B,s) by backward chaining.
- But both are true in \mathbf{S}_{0}, so we can conclude $\operatorname{On}\left(\mathbf{A}, \mathbf{B}, \operatorname{Result}\left(\operatorname{Move}(\mathbf{A}, \mathrm{B}), \mathbf{S}_{0}\right)\right.$)
- We are done!
- We look in the proof and see only one action, $\operatorname{Move}(\mathbf{A}, \mathbf{B})$, which is executed in situation $\mathbf{S}_{\mathbf{0}}$, so this is our plan.

Tougher Example: Same Initial World, Harder Goal

Clear(A, \mathbf{S}_{0})
Clear(B, \mathbf{S}_{0})
and axioms about actions, etc.

- Goal:
$\exists s^{\prime} \mathbf{O n}\left(\mathrm{A}, \mathrm{B}, \mathrm{s}^{\prime}\right) \wedge \mathbf{O n}\left(\mathrm{B}, \mathrm{C}, \mathrm{s}^{\prime}\right)$
(Intuitively, really not harder: B already on C, and we just showed how to make A on B.)

With Goal On(A,B,s') ^ On(B,C,s')

- Suppose we try to prove the first subgoal, On(A,B,s').
- Use same axiom

```
\forallx,y,s. Clear(x,s) ^ Clear(y,s)
    # On(x,y, Result(Move(x,y),s))
```

- Again, by chaining, we can conclude $\operatorname{On}\left(A, B, R e s u l t\left(M o v e(A, B), S_{0}\right)\right)$.
- Abbreviating Result(Move(A,B), $\left.\mathbf{S}_{0}\right)$ as \mathbf{S}_{1}, we have $\mathbf{O n}\left(\mathbf{A}, \mathbf{B}, \mathbf{S}_{\mathbf{1}}\right)$.
- Substituting for s' in our other subgoal makes that $\mathbf{O n}\left(\mathbf{B}, \mathbf{C}, \mathbf{S}_{\mathbf{1}}\right)$. If this is true, we're done.
- But we have no reason to believe this is true!
- Sure, On(B,C,S $\left.\mathbf{S}_{0}\right)$, but how does the planner know this is still true, i.e., On(B,C,S \mathbf{S}_{1} ?
- In fact, it doesn't, so it fails to find an answer!

The Frame Problem

We have failed to express the fact that everything that isn't changed by an action stays the same.
. Can fix by adding frame axioms. E.g.:
$\forall x, y, z, s$.
Clear(x,s) \Rightarrow Clear($x, \operatorname{Result(Paint(x,y),s))~}$

There are lots of these!
. Is this a big problem?

Better Frame Axioms

- Can fix with neater formulation:

$$
\begin{aligned}
& \forall x, y, s, a . \\
& \operatorname{On}(x, y, s) \wedge(\forall z . a=\operatorname{Move}(x, z) \Rightarrow y=z) \\
& \quad \Rightarrow \operatorname{On}(x, y, \operatorname{Result}(a, s))
\end{aligned}
$$

- Can combine with effect axioms to get successor-state axioms:
$\forall \mathbf{x}, \mathrm{y}, \mathrm{s}, \mathrm{a}$.
On(x,y,Result(a,s)) \Leftrightarrow
$\operatorname{On}(x, y, s) \wedge(\forall z . a=\operatorname{Move}(x, z) \Rightarrow y=z)$
$\vee(\operatorname{Clear}(\mathrm{x}, \mathrm{s}) \wedge \operatorname{Clear}(\mathrm{y}, \mathrm{s}) \wedge \mathrm{a}=\operatorname{Move}(\mathrm{x}, \mathrm{y}))$

How Does This Help Our Example?

- We want to prove

On(B,C,Result(Move(A,B), $\left.\mathbf{S}_{0}\right)$) given that On(B,C, $\left.\mathbf{S}_{0}\right)$

Axiom says
$\forall \mathrm{x}, \mathrm{y}, \mathrm{s}, \mathrm{a} . \operatorname{On}(\mathrm{x}, \mathrm{y}, \operatorname{Result}(\mathrm{a}, \mathrm{s})) \Leftrightarrow$ $\operatorname{On}(\mathrm{x}, \mathrm{y}, \mathrm{s}) \wedge(\forall \mathrm{z} . \mathrm{a}=\operatorname{Move}(\mathrm{x}, \mathrm{z}) \Rightarrow \mathrm{y}=\mathrm{z})$
$\vee(\operatorname{Clear}(x, s) \wedge \operatorname{Clear}(y, s) \wedge a=\operatorname{Move}(x, y))$

- So need to show
$\operatorname{On}\left(\mathrm{B}, \mathrm{C}, \mathrm{S}_{0}\right) \wedge(\forall \mathbf{z}$. Move $(\mathbf{A}, \mathrm{B})=\operatorname{Move}(\mathrm{B}, \mathrm{z}) \Rightarrow \mathbf{C = z})$ is true, which is easy
- The first conjunct is in the KB.
- The second one is true since actions are the same only if they have the same name and involve the exact same objects i.e.

$$
A\left(x_{1}, \ldots, x_{m}\right)=A\left(y_{1}, \ldots, y_{m}\right) \text { iff } x_{1}=y_{1} \wedge \ldots \wedge x_{m}=y_{m}
$$

so $\operatorname{Move}(A, B)=\operatorname{Move}(B, z)$ is false.

Note: Another assumption in KB: $\quad A\left(x_{1}, \ldots, x_{m}\right) \neq B\left(y_{1}, \ldots, y_{n}\right)$

For Refutation Theorem Proving: (Dual) Skolemisation

- Suppose $\forall x$. ヨy. $G(x, y)$ is goal in resolution refutation.
- So, we need to negate the goal:

$$
\neg \forall x . \exists y . G(x, y) \equiv \exists x . \forall y . \neg G(x, y)
$$

- Then skolemise (i.e drop existential quantifier):

$$
\neg \mathrm{G}\left(\mathrm{X}_{0}, \mathrm{y}\right)
$$

- Intuition:
- y is to be unified to construct witness.
- X_{0} must not be instantiated.
- Similar story for GMP, but goal not negated, i.e. $G\left(X_{0}, y\right)$, for some y , is used as the goal.

KB and Axioms as Clauses

Constants: A, B, C, S0

Initial State
On(A,Table,S0)
On(B,C,S0)
On(C,Table,S0)
Clear(A,S0)
Clear(B,S0)

Goal
$\neg \mathrm{On}(\mathrm{A}, \mathrm{B}, \mathrm{s}) \vee \neg \mathrm{On}\left(\mathrm{B}, \mathrm{C}, \mathrm{s}^{\prime}\right)$

Effect Axiom

\rightarrow Clear(x,s) v - Clear (y, s) v
On(x,y, Result(Move(x,y),s))

Frame Axioms

$\neg \operatorname{On}(\mathrm{x}, \mathrm{y}, \mathrm{s}) \vee \mathrm{a}=\operatorname{Move}(\mathrm{x}, \mathrm{Z}(\mathrm{x}, \mathrm{y}, \mathrm{s}, \mathrm{a})) \vee \operatorname{On}(\mathrm{x}, \mathrm{y}, \operatorname{Result}(\mathrm{a}, \mathrm{s}))$
$\neg \mathrm{On}(\mathrm{x}, \mathrm{y}, \mathrm{s}) \vee \neg \mathrm{y}=\mathrm{Z}(\mathrm{x}, \mathrm{y}, \mathrm{s}, \mathrm{a}) \vee \mathrm{On}(\mathrm{x}, \mathrm{y}, \operatorname{Result}(\mathrm{a}, \mathrm{s}))$
Unique Action Axioms: $\neg \operatorname{Move}(\mathrm{A}, \mathrm{B})=\mathrm{Move}(\mathrm{B}, \mathrm{z})$, etc
Unique Name Axiom: disequality for every pair of constants in KB

Resolution Refutation

\rightarrow Clear $(x, s) \vee \neg \operatorname{Clear}(y, s) \vee$
$\neg \mathrm{On}\left(\mathrm{A}, \mathrm{B}, \mathrm{s}^{\prime}\right) \vee \neg \mathrm{On}\left(\mathrm{B}, \mathrm{C}, \mathrm{s}^{\prime}\right)$
On(x,y, Result(Move(x,y),s))

\neg Clear $(\mathrm{A}, \mathrm{s}) \vee \neg$ Clear $(\mathrm{B}, \mathrm{s}) \vee$
\rightarrow On(B,C, Result(Move(A,B),s))
$\rightarrow \mathrm{On}(\mathrm{x}, \mathrm{y}, \mathrm{s}) \vee$
\neg Clear(B,SO) $\vee \downarrow$
$\mathrm{a}=\operatorname{Move}(\mathrm{x}, \mathrm{Z}(\mathrm{x}, \mathrm{y}, \mathrm{s}, \mathrm{a})) \vee \gg \mathrm{On}(\mathrm{B}, \mathrm{C}, \operatorname{Result}(\operatorname{Move}(\mathrm{A}, \mathrm{B}), \mathrm{S} 0))$
On(x,y,Result (a,s))
$=\mathrm{On}(\mathrm{B}, \mathrm{C}, \operatorname{Result}(\operatorname{Move}(\mathrm{A}, \mathrm{B}), \mathrm{SO}))$
$\neg \mathrm{On}(\mathrm{B}, \mathrm{C}, \mathrm{S} 0) \vee$
$\operatorname{Move}(\mathrm{A}, \mathrm{B})=\operatorname{Move}(\mathrm{B}, \mathrm{Z}(\mathrm{x}, \mathrm{y}, \mathrm{s}, \mathrm{a})) \quad \rightarrow \operatorname{Move}(\mathrm{A}, \mathrm{x})=\operatorname{Move}(\mathrm{B}, \mathrm{z})$
$\neg \mathrm{On}(\mathrm{B}, \mathrm{C}, \mathrm{S} 0) \longrightarrow \mathrm{On}(\mathrm{B}, \mathrm{C}, \mathrm{S} 0)$

Frame problem partially solved

This solves the representational part of the frame problem.
. Still have to compute that everything that was true that wasn't changed is still true. Inefficient (as is general theorem proving).
. Solution: Special purpose representations, special purpose algorithms, called Planners.

Summary

PLANNING

SITUATIONS

FRAME PROBLEM

