Effective Propositional Inference

Informatics 2D: Reasoning and Agents

Adapted from slides provided by Dr Petros Papapanagiotou

Outline

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

• DPLL algorithm (Davis, Putnam, Logemann, Loveland)

Incomplete local search algorithms

• WalkSAT algorithm

Clausal Form (CNF)

DPLL and WalkSAT manipulate formulae in conjunctive normal form (CNF).

Sentence	 Formula whose satisfiability is to be determined Conjunction of clauses
Clause	• Disjunction of literals
Literal	 Proposition symbol or negated proposition symbol

e.g. $(A, \neg B), (B, \neg C)$ represents $(A \lor \neg B) \land (B \lor \neg C)$

 $\left(B_{1,1} \Leftrightarrow P_{1,2} \lor P_{2,1}\right)$

Eliminate \Leftrightarrow : replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

• $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

Eliminate \Rightarrow : replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$

• $(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

Move ¬ **inwards** : use de Morgan's rules and double negation $\neg \neg \alpha = \alpha$

• $(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

Create clauses: apply distributivity law (V over Λ) and flatten

•
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

DPLL

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

- 1. Early termination
- 2. Pure symbol heuristic
- 3. Unit clause heuristic

1. Early termination

> A clause is true if one of its literals is true,
∘ e.g., if A is true then (A ∨ ¬B) is true.

- > A sentence is false if **any** of its clauses is false,
 - e.g., if A is false and B is true then
 - $(A \lor \neg B)$ is false, so any sentence containing it is false.

2. Pure symbol heuristic

> Pure symbol: always appears with the same "sign"/polarity in all clauses.

- $^\circ\,$ e.g., In the three clauses (A $\vee \neg$ B), (\neg B $\vee \ \neg$ C), (C \vee A):
 - A and B are pure, C is impure.

> Make literal containing a pure symbol true.

 $\circ\,$ e.g., Let A and $\neg B$ both be true.

3. Unit clause heuristic

> Unit clause: only one literal in the clause

• e.g. (A)

The only literal in a unit clause must be true.
 e.g., A must be true.

Also includes clauses where **all but one** literal is false, e.g. (A,B,C) where B and C are false since it is equivalent to (A, false, false) i.e. (A).

function DPLL-SATISFIABLE?(*s*) **returns** *true* or *false* **inputs**: *s*, a sentence in propositional logic

 $clauses \leftarrow$ the set of clauses in the CNF representation of s $symbols \leftarrow$ a list of the proposition symbols in s**return** DPLL(clauses, symbols, { })

function DPLL(clauses, symbols, model) returns true or false

if every clause in *clauses* is true in *model* then return *true* if some clause in *clauses* is false in *model* then return *false* $P, value \leftarrow FIND-PURE-SYMBOL(symbols, clauses, model)$ if P is non-null then return DPLL(clauses, symbols – $P, model \cup \{P=value\})$ $P, value \leftarrow FIND-UNIT-CLAUSE(clauses, model)$ if P is non-null then return DPLL(clauses, symbols – $P, model \cup \{P=value\})$ $P \leftarrow FIRST(symbols); rest \leftarrow REST(symbols)$ return DPLL(clauses, rest, model $\cup \{P=true\}$) or DPLL(clauses, rest, model $\cup \{P=talse\}$))

The DPLL algorithm

Tautology Deletion (Optional)

Tautology: both a proposition and its negation in a clause.
 e.g. (A, B, ¬A)

- Clause bound to be true.
 - e.g., whether A is true or false.
 - Therefore, can be deleted.

Mid-Lecture Exercise

➤ Apply DPLL heuristics to the following sentence:
(S_{2,1}), (¬S_{1,1}), (¬S_{1,2}),
(¬S_{2,1}, W_{2,2}), (¬S_{1,1}, W_{2,2}), (¬S_{1,2}, W_{2,2}),
(¬W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})

> Use **case splits** if model not found by the heuristics.

Symbols: S_{1,1}, S_{1,2}, S_{2,1}, W_{2,2}

Pure symbol heuristic:

 $(S_{2,1})$ $(\neg S_{1,1})$ $(\neg S_{1,2})$ $(\neg S_{2,1}, W_{2,2})$ $(\neg S_{1,1}, W_{2,2})$ $(\neg S_{1,2}, W_{2,2})$ $(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})$

Pu	re symbol heuristic:
0	No literal is pure.

Unit clause heuristic:

 $(S_{2,1})$ $(\neg S_{1,1})$ $(\neg S_{1,2})$ $(\neg S_{2,1}, W_{2,2})$ $(\neg S_{1,1}, W_{2,2})$ $(\neg S_{1,2}, W_{2,2})$ $(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})$

Pure symbol heuristic:	т
 No literal is pure. 	(¬S _{1,1})
 Unit clause heuristic: S_{2,1} is true 	(¬S _{1,2})
	(F , W _{2,2})
	(¬S _{1,1} , W _{2,2})
	(¬S _{1,2} , W _{2,2})

(¬W_{2,2}, **T**, S_{1,1}, S_{1,2})

Pure symbol heuristic:	т
 No literal is pure. 	(¬S _{1,1})
 Onit clause heuristic: S₂₁ is true 	(¬S _{1,2})
Early termination heuristic:	(F , W _{2,2})
∘ (¬W _{2,2} , S _{2,1} , S _{1,1} , S _{1,2}) is true	(¬S _{1,1} , W _{2,2})
	(¬S _{1,2} , W _{2,2})

Т

Pure symbol heuristic:	т
 No literal is pure. 	т
Unit clause heuristic:	(¬S _{1,2})
 S_{2,1} is true S_{1,1} is false 	(F , W _{2,2})
Early termination heuristic:	(T , W _{2,2})
• ($\neg W_{2,2}$, S _{2,1} , S _{1,1} , S _{1,2}) is true	(¬S _{1,2} , W _{2,2})
	т

Pure symbol heuristic:

 $\circ~$ No literal is pure.

Unit clause heuristic:

- S_{2,1} is true
- \circ S_{1,1} is false
- $\circ~S_{1,2}$ is false

Early termination heuristic:

- $\,\circ\,$ (¬W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2}) is true
- $\circ~(\neg S_{1,1},W_{2,2})$ is true

Pure symbol heuristic:

• No literal is pure.

Unit clause heuristic:

- \circ S_{2,1} is true
- \circ S_{1,1} is false
- $\circ~S_{1,2}$ is false

Early termination heuristic:

- $\,\circ\,$ (¬W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2}) is true
- $(\neg S_{1,1}, W_{2,2})$ is true
- $\circ~(\neg S_{2,1},W_{2,2})$ is true

Pure symbol heuristic:

• No literal is pure.

Unit clause heuristic:

- \circ S_{2,1} is true
- \circ S_{1,1} is false
- $\circ~S_{1,2}$ is false
- $\circ~W_{2,2}$ is true

Early termination heuristic:

- $\,\circ\,$ (¬W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2}) is true
- $\circ~(\neg S_{1,1},W_{2,2})$ is true
- $\circ~(\neg S_{2,1},W_{2,2})$ is true

The WalkSAT algorithm

Incomplete, local search algorithm

Evaluation function:

• The min-conflict heuristic of minimizing the number of unsatisfied clauses

Algorithm checks for satisfiability by randomly flipping the values of variables

Balance between greediness and randomness

function WALKSAT(*clauses*, *p*, *max_flips*) returns a satisfying model or *failure* inputs: *clauses*, a set of clauses in propositional logic p, the probability of choosing to do a "random walk" move, typically around 0.5 max_flips, number of flips allowed before giving up $model \leftarrow$ a random assignment of true/false to the symbols in clauses for i = 1 to max_flips do if model satisfies clauses then return model $clause \leftarrow$ a randomly selected clause from clauses that is false in model with probability p flip the value in model of a randomly selected symbol from clause else flip whichever symbol in *clause* maximizes the number of satisfied clauses **return** failure The WalkSAT algorithm

Hard satisfiability problems

Consider random 3-CNF sentences.

• Example:

 $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$

- m = number of clauses
- n = number of symbols

Hard problems seem to cluster near m/n = 4.3 (critical point)

Hard satisfiability problems

Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

Inference in the Wumpus World

Inference-based agents in the wumpus world

> A wumpus-world agent using propositional logic:

≻ 64 distinct proposition symbols, 155 sentences

function Hybrid-WUMPUS-AGENT(percept) returns an action **inputs**: *percept*, a list, [*stench*, *breeze*, *glitter*, *bump*, *scream*] **persistent**: *KB*, a knowledge base, initially the atemporal "wumpus physics" t, a counter, initially 0, indicating time *plan*, an action sequence, initially empty TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))TELL the KB the temporal "physics" sentences for time t $safe \leftarrow \{[x, y] : ASK(KB, OK_{x,y}^t) = true\}$ if $ASK(KB, Glitter^t) = true$ then $plan \leftarrow [Grab] + PLAN-ROUTE(current, \{[1,1]\}, safe) + [Climb]$ if *plan* is empty then unvisited $\leftarrow \{[x, y] : \mathsf{ASK}(KB, L_{x,y}^{t'}) = \text{false for all } t' \leq t\}$ $plan \leftarrow PLAN-ROUTE(current, unvisited \cap safe, safe)$ if *plan* is empty and ASK(*KB*, *HaveArrow*^t) = true then $possible_wumpus \leftarrow \{[x, y] : ASK(KB, \neg W_{x,y}) = false\}$ $plan \leftarrow PLAN-SHOT(current, possible_wumpus, safe)$ if *plan* is empty then // no choice but to take a risk $not_unsafe \leftarrow \{[x, y] : ASK(KB, \neg OK_{x, y}^t) = false\}$ $plan \leftarrow PLAN-ROUTE(current, unvisited \cap not_unsafe, safe)$ if *plan* is empty then $plan \leftarrow PLAN-ROUTE(current, \{[1, 1]\}, safe) + [Climb]$ action $\leftarrow \text{POP}(plan)$ TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ **return** action

The Wumpus Agent function PLAN-ROUTE(current, goals, allowed) returns an action sequence
inputs: current, the agent's current position
 goals, a set of squares; try to plan a route to one of them
 allowed, a set of squares that can form part of the route

 $problem \leftarrow \text{ROUTE-PROBLEM}(current, goals, allowed)$ return A*-GRAPH-SEARCH(problem)

We need more!

Effect axioms

 $L_{1,1}^0 \wedge FacingEast^0 \wedge Forward^0 \Rightarrow L_{2,1}^1 \wedge \neg L_{1,1}^1$

We need extra axioms about the world.

Frame problem! - representational & inferential

Frame axioms:

 $Forward^{t} \Rightarrow (HaveArrow^{t} \Leftrightarrow HaveArrow^{t+1})$ $Forward^{t} \Rightarrow (WumpusAlive^{t} \Leftrightarrow WumpusAlive^{t+1})$

Successor-state axioms:

 $HaveArrow^{t+1} \Leftrightarrow (HaveArrow^t \land \neg Shoot^t)$

Expressiveness limitation of propositional logic

> KB contains "physics" sentences for every single square.

For every time t and every location [x,y],

 $L^{t}_{x,y} \wedge FacingRight^{t} \wedge Forward^{t} \Longrightarrow L^{t+1}_{x+1,y}$

> Rapid proliferation of clauses!

Why?

Fundamentals behind SAT/SMT solvers.

- > Highly specialised and optimised tools.
 - Capable of solving problems with thousands of propositions and millions of constraints, despite NP-completeness and exponential algorithms!
- Close relation to CSPs and optimization problems.
- > Very large array of applications, e.g.:
 - Circuit routing and testing, automatic test generation, formal verification, planning & scheduling, configuration/customisation, etc.