First-order Logic

Informatics 2D: Reasoning and Agents

Adapted from slides provided by Dr Petros Papapanagiotou

Pros and cons of Propositional Logic

- ✓ Declarative
- Partial/disjunctive/negated information
 - (unlike most data structures and databases!)
- Compositional
 - The meaning of $B_{1,1} \wedge P_{1,2}$ is derived from that of $B_{1,1}$ and of $P_{1,2}$

- × Meaning is context-independent
 - (unlike natural language, where meaning depends on context)
- × Very limited expressive power
 - (unlike natural language)
 - for example, we cannot say "pits cause breezes in adjacent squares", except by writing one sentence for each square

First-order logic (FOL)

Propositional logic assumes the world contains atomic facts.

• Non-structured propositional symbols, usually finitely many.

➢ FOL assumes the world contains:

Syntax of FOL: Basic elements

Atomic formulae

Atomic formula = $predicate (term_1,...,term_n)$ or $term_1 = term_2$

Term = $function (term_1,...,term_n)$ or constant or variable

Examples:

• Brother(KingJohn,Richard)

Complex formulae

Complex formulae are made from atomic formulae using connectives

$\neg P \quad P \land Q \qquad P \lor Q \qquad P \Rightarrow Q \qquad P \Leftrightarrow Q$

Examples:

Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)

 $>(1,2) \lor \leq (1,2)$

>(1,2) ^ ¬>(1,2)

Semantics of first-order logic

Formulae are mapped to an **interpretation**.

An interpretation is called a model of a set of formulae when all the formulae are **true** in the interpretation.

Semantics of first-order logic

An interpretation contains objects (domain elements) and relations between them. Mapping is as follows :

> constant symbols \mapsto objects predicate symbols \mapsto relation function symbols \mapsto functions

> An atomic formula *predicate*(*term*₁,...,*term*_n) is **true**

iff the objects referred to by term₁,...,term_n

are in the relation referred to by *predicate*.

A Social Network Ontology based on **Description Logics**

Semantic approaches rely on a knowledge representation, such as an ontology, for

PriGuard: A Semantic Approach to Detect Privacy Violations in Online Social Networks. Nadin Kökciyan and Plnar Yolum. IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 28, no. 10, pp. 2724-2737. 2016.

Adding further inference: Rules

 I_1 : isFriendOf(?user, ?tp) \rightarrow inFRContext(?user, ?tp)

I₂: workAt(?user, ?office), workAt(?tp, ?office), hasRole(?tp, ?role), isColleagueOf(?user, ?tp)

 \rightarrow inPRContext(?user, ?tp)

 I_3 : Emergency(?em), isInEmergency(?user, ?em), hasRole(?tp, :em-responder) \rightarrow inEMContext(?user, ?tp)

 P_1 : owns(:bob, :bob-loc), inPRContext(:bob, ?tp) \rightarrow allow(?tp, :bob-loc)

 P_2 : owns(:bob, :bob-loc), inFRContext(:bob, ?tp) \rightarrow disallow(?tp, :bob-loc)

 A_1 : owns(:bob, :bob-loc), inPRContext(:bob, :alice), hasAR(:alice, :bob-loc) \rightarrow allow(:alice, :bob-loc)

 A_2 : owns(:bob, :bob-mobile), inEMContext(:bob, :alice), hasAR(:alice, :bob-mobile) \rightarrow allow(:alice, :bob-mobile)

 A_3 : owns(:bob, :bob-loc), inFRContext(:bob, :alice), hasAR(:alice, :bob-loc) \rightarrow disallow(:alice, :bob-loc)

Contextual Integrity for Argumentation-based Privacy Reasoning. Gideon Ogunniye and Nadin Kökciyan. The International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023, Accepted.

Universal quantification

∀<variables>. <formula>

- But will often write $\forall x, y$. *P* for $\forall x$. $\forall y$. *P*
- Example: Everyone at UoE is smart: $\forall x$. At(x, UoE) \Rightarrow Smart(x)

 $\succ \forall x. P \text{ is true in an interpretation } m \text{ iff } P \text{ is true with } x \text{ being each possible object in the interpretation.}$

➤ Roughly speaking, equivalent to the conjunction of instantiations of P At(KingJohn, UoE) ⇒ Smart(KingJohn)

- \land At(Richard, UoE) \Rightarrow Smart(Richard)
- \land At(UoE, UoE) \Rightarrow Smart(UoE) $\land ...$

Existential quantification

∃<variables>. <formula>

- But will often write $\exists x, y$. *P* for $\exists x. \exists y. P$
- Example: Someone at UoE is smart: ∃x. At(x, UoE) ∧ Smart(x)

> $\exists x. P$ is true in an interpretation *m* iff *P* is true with *x* being **some** possible object in the interpretation.

Roughly speaking, equivalent to the disjunction of instantiations of P At(KingJohn, UoE) ^ Smart(KingJohn)

- ∨ At(Richard, UoE) ∧ Smart(Richard)
- ✓ At(UoE, UoE) ∧ Smart(UoE) ∨ ...

Rule of thumb

Common mistakes

 $\forall x. \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$

 $\forall x. \operatorname{King}(x) \land \operatorname{Person}(x)$

Common mistakes

 $\exists x. Crown(x) \Rightarrow OnHead(x, John)$

 $\exists x. Crown(x) \land OnHead(x, John)$

Properties of quantifiers

 $\succ \forall x. \forall y.$ is the same as $\forall y. \forall x.$

 $\exists x. \exists y.$ is the same as $\exists y. \exists x.$

- $\succ \exists x. \forall y. \text{ is$ **not** $the same as } \forall y. \exists x.$
 - $\exists x. \forall y. Loves(x, y) : "There is a person who loves everyone in the world"$
 - $\forall y. \exists x. Loves(x, y) : "Everyone in the world is loved by at least one person"$

> Quantifier duality: each can be expressed using the other:

- $\forall x. \text{ Likes}(x, \text{ IceCream}) \equiv \neg \exists x. \neg \text{Likes}(x, \text{ IceCream})$
- $\exists x$. Likes(x, Broccoli) $\equiv \neg \forall x$. \neg Likes(x, Broccoli)

Equality

> $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.

> Example: Definition of *Sibling* in terms of *Parent*:

$$\forall x, y. Sibling(x, y) \Leftrightarrow (\neg(x = y) \land$$

 $\exists m, f. \neg (m = f) \land$

 $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y))$

Example: Kinship domain

Brothers are siblings.

• $\forall x, y$. Brother(x, y) \Rightarrow Sibling(x, y)

One's mother is one's female parent.

• $\forall m, c. Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m, c))$

"Sibling" is symmetric.

• $\forall x, y$. Sibling(x, y) \Leftrightarrow Sibling(y, x)

"Parent" and "Child" are inverse relations.

• $\forall x, y$. Parent(x, y) \Leftrightarrow Child(y, x)

Example: Set domain

$\forall s. \text{ Set}(s) \Leftrightarrow (s = \{\}) \lor (\exists x_1 s_2. \text{ Set}(s_2) \land s = \{x s_2\})$
$\neg \exists x, s. \{x s\} = \{\}$
$\forall x, s. x \in s \Leftrightarrow s = \{x s\}$
$\forall x, s. \ x \in s \Leftrightarrow [\ \exists y, s_{2.} \ (s = \{y s_2\} \land (x = y \lor x \in s_2))]$
$\forall s_1, s_2, s_1 \subseteq s_2 \Leftrightarrow (\forall x. x \in s_1 \Rightarrow x \in s_2)$
$\forall s_1, s_2, (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1)$
$\forall x, s_1, s_2, x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2)$
$\forall x, s_1, s_2, x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2)$

Interacting with FOL KBs

Suppose a Wumpus-world agent using a FOL KB perceives: a smell and a breeze (but no glitter) at t=5:

> Tell(KB, Percept([Smell, Breeze, None], 5)) Ask(KB, ∃a. BestAction(a, 5))

i.e., does the KB entail some **best action** at t=5?

Substitution

> Given a sentence S and a substitution σ ,

• So denotes the result of "plugging" σ into S; e.g.,

S = Smarter(x, y)

 $\sigma = \{x/Agent_1, y/Wumpus_1\}$

 $S_{\sigma} = Smarter(Agent_1, Wumpus_1)$

> Ask(KB, S) returns some/all σ such that KB \models S σ

Interacting with FOL KBs

Suppose a Wumpus-world agent using a FOL KB perceives: a smell and a breeze (but no glitter) at t=5:

> Tell(KB, Percept([Smell, Breeze, None], 5)) Ask(KB, ∃a. BestAction(a, 5))

i.e., does the KB entail some best action at t=5? Answer: Yes, {a/Shoot} \leftarrow substitution (binding list)

KB for the Wumpus world

 \bigcirc Perception $\forall t, s, b.$ Percept([s, b, Glitter], t) \Rightarrow Glitter(t)

Deducing hidden properties

 $\forall x, y, a, b. Adjacent([x, y], [a, b]) \Leftrightarrow [a, b] \in \{ [x+1, y], [x-1, y], [x, y+1], [x, y-1] \}$ $\forall s, t. At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$

> Squares are breezy near a pit:

• Diagnostic rule: infer cause from effect

 $\forall s. \operatorname{Breezy}(s) \Rightarrow \exists r. \operatorname{Adjacent}(r, s) \land \operatorname{Pit}(r)$

• Causal rule: infer effect from cause

 $\forall r. \operatorname{Pit}(r) \Rightarrow (\forall s. \operatorname{Adjacent}(r, s) \Rightarrow \operatorname{Breezy}(s))$

Why?

Universal ontology language.

- e.g., databases, semantic web, knowledge graphs
- > At the core of:
 - programming language semantics and type theory.
 - formal verification and advanced (> propositional) automated reasoning.
 - theorem proving, including in mathematics, physics, cryptography, and beyond.
 - logic programming and its derivations, expert systems, rule-based systems.
- > Renewed interest in the context of explainable AI (XAI) and the "third-wave of AI".

