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Pros and cons of Propositional Logic

✓ Declarative

✓ Partial/disjunctive/negated information

◦ (unlike most data structures and databases!)

✓ Compositional

 The meaning of B1,1  P1,2 is derived from that 

of B1,1 and of P1,2

Meaning is context-independent

◦ (unlike natural language, 

where meaning depends on context)

Very limited expressive power

◦ (unlike natural language)

◦ for example, we cannot say "pits cause 

breezes in adjacent squares“, except by 

writing one sentence for each square
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First-order logic (FOL)

➢ Propositional logic assumes the world contains atomic facts.

◦ Non-structured propositional symbols, usually finitely many.

➢ FOL assumes the world contains:
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• people, houses, numbers, colours, football games, 
wars, …Objects

• red, round, prime, brother of, bigger than, part of, 
comes between, …Relations

• father of, best friend, one more than, plus, …Functions



Syntax of FOL: Basic elements

Constants • KingJohn, 2, UoE,...

Predicates • Brother, >,...

Functions • Sqrt, LeftLegOf,...

Variables • x, y, a, b,...

Connectives • , , , , 

Equality • =

Quantifiers • , 

4INF2D: REASONING AND AGENTS



Syntax of FOL: Basic elements

Constants • KingJohn/0, 2 /0, UoE /0, ...

Predicates • Brother/2, >/2, ...

Functions • Sqrt/1, LeftLegOf/1, +/2, …

Variables • x, y, a, b, ...

Connectives • , , , , 

Equality • =

Quantifiers • , 

Arity!
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Atomic formulae

Atomic formula = predicate (term1,...,termn)    

  or term1 = term2

Term = function (term1,...,termn)    

  or constant or variable 

Examples:

◦ Brother(KingJohn,Richard)

◦ >( Length( LeftLegOf( Richard )), Length( LeftLegOf( KingJohn )))

predicate functions constants
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Complex formulae

 Complex formulae are made from atomic formulae using connectives

P P Q  P  Q  P  Q P  Q 

Examples:

Sibling(KingJohn,Richard)  Sibling(Richard,KingJohn)

>(1,2)  ≤ (1,2)

>(1,2)   >(1,2)
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Semantics of first-order logic
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Formulae are mapped to an interpretation.

An interpretation is called a model of a set of formulae 
when all the formulae are true in the interpretation.



Semantics of first-order logic

➢ An interpretation contains objects (domain elements) and relations between 
them. Mapping is as follows :

 constant symbols  objects

 predicate symbols relation

 function symbols  functions

➢ An atomic formula predicate(term1,...,termn) is true

  iff the objects referred to by term1,...,termn

  are in the relation referred to by predicate.
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Interpretations for 
FOL: Example

Brother(KingJohn,Richard)

>( Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
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A Social Network Ontology based on 
Description Logics
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Semantic approaches rely on a knowledge 

representation, such as an ontology, for 

reasoning on the content.

PriGuard: A Semantic Approach to Detect Privacy Violations in Online Social Networks. Nadin Kökciyan and PInar Yolum. 

IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 28, no. 10, pp. 2724-2737. 2016.



Adding further inference: Rules
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Contextual Integrity for Argumentation-based Privacy Reasoning. Gideon Ogunniye and Nadin Kökciyan. 

The International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023, Accepted.



Universal quantification

<variables>. <formula>
◦ But will often write  x,y. P for x. y. P

◦ Example: Everyone at UoE is smart: x. At(x, UoE)  Smart(x)

➢ x. P is true in an interpretation m iff P is true with x being each possible 

object in the interpretation.

➢ Roughly speaking, equivalent to the conjunction of instantiations of P

  At(KingJohn, UoE)  Smart(KingJohn) 

  At(Richard, UoE)   Smart(Richard) 

  At(UoE, UoE)  Smart(UoE)  ...
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Existential quantification

<variables>. <formula>
◦ But will often write  x,y. P for  x.  y. P

◦ Example: Someone at UoE is smart: x. At(x, UoE)  Smart(x)

➢ x. P is true in an interpretation m iff P is true with x being some possible 

object in the interpretation.

➢ Roughly speaking, equivalent to the disjunction of instantiations of P

  At(KingJohn, UoE)  Smart(KingJohn) 

     At(Richard, UoE)  Smart(Richard) 

   At(UoE, UoE)  Smart(UoE)  ...
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Rule of thumb

 

15INF2D: REASONING AND AGENTS



Common mistakes

x. King(x)  Person(x) x. King(x)  Person(x)
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Common mistakes

x. Crown(x)  OnHead(x, John) x. Crown(x)  OnHead(x, John)
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Properties of quantifiers

➢ x.y. is the same as y.x. x.y. is the same as y.x.

➢ x.y. is not the same as y.x.

◦ x. y. Loves(x, y) : “There is a person who loves everyone in the world

◦ y. x. Loves(x, y) : “Everyone in the world is loved by at least one person”

➢ Quantifier duality: each can be expressed using the other:

◦ x. Likes(x, IceCream) ≡ x. Likes(x, IceCream)

◦ x. Likes(x, Broccoli)  ≡   x. Likes(x, Broccoli)
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Equality

➢ term1 = term2 is true under a given interpretation 

if and only if term1 and term2 refer to the same object.

➢ Example: Definition of Sibling in terms of Parent:

x, y. Sibling(x, y)  ((x = y)  

  m, f.  (m = f)  

   Parent(m, x)  Parent(f, x)  Parent(m, y)   Parent(f, y))
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Example: Kinship domain
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• x, y. Brother(x, y)  Sibling(x, y)

Brothers are siblings.

• m, c. Mother(c) = m  (Female(m)  Parent(m, c))

One's mother is one's female parent.

• x, y. Sibling(x, y)  Sibling(y, x)

“Sibling” is symmetric.

• x, y. Parent(x, y)  Child(y, x)

“Parent” and “Child” are inverse relations.



Example: Set domain
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s. Set(s)  (s = {})  (x,s2. Set(s2)  s = {x|s2})

x,s. {x|s} = {}

x,s. x  s  s = {x|s}

x,s. x  s  [ y,s2. (s = {y|s2}  (x = y  x  s2))]

s1,s2. s1  s2  (x. x  s1  x  s2)

s1,s2. (s1 = s2)  (s1  s2  s2  s1)

x,s1,s2. x  (s1  s2)  (x  s1  x  s2)

x,s1,s2. x  (s1  s2)  (x  s1  x  s2)



Interacting with FOL KBs

➢ Suppose a Wumpus-world agent using a FOL KB perceives: 

a smell and a breeze (but no glitter) at t=5:

Tell(KB, Percept( [Smell, Breeze, None], 5))

Ask(KB, a. BestAction(a, 5))

i.e., does the KB entail some best action at t=5?
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Substitution

➢Given a sentence S and a substitution σ,

◦ Sσ denotes the result of “plugging” σ into S; e.g.,

S = Smarter(x, y)

σ = {x/Agent1, y/Wumpus1}

Sσ = Smarter(Agent1, Wumpus1)

➢ Ask(KB, S) returns some/all σ such that KB ⊨ Sσ
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Interacting with FOL KBs

➢ Suppose a Wumpus-world agent using a FOL KB perceives: 

a smell and a breeze (but no glitter) at t=5:

Tell(KB, Percept( [Smell, Breeze, None], 5))

Ask(KB, a. BestAction(a, 5))

i.e., does the KB entail some best action at t=5?

Answer: Yes, {a/Shoot}  ← substitution (binding list)
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KB for the Wumpus world

 Perception

 t,s,b. Percept( [s, b, Glitter], t)  Glitter(t)

Reflex

 t. Glitter(t)  BestAction(Grab, t)
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Deducing hidden properties

➢ x, y, a, b. Adjacent([x, y], [a, b])  [a, b]  { [x+1, y], [x-1, y], [x, y+1], [x, y-1] }

s, t. At(Agent, s, t)  Breeze(t)  Breezy(s)

➢ Squares are breezy near a pit:

◦ Diagnostic rule: infer cause from effect

s. Breezy(s)  r. Adjacent(r, s)  Pit(r)

◦ Causal rule: infer effect from cause

r. Pit(r)  (s. Adjacent(r, s)  Breezy(s) )
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Why?

➢ Universal ontology language.

◦ e.g., databases, semantic web, knowledge graphs

➢At the core of:

◦ programming language semantics and type theory.

◦ formal verification and advanced (> propositional) automated reasoning.

◦ theorem proving, including in mathematics, physics, cryptography, and beyond.

◦ logic programming and its derivations, expert systems, rule-based systems.

➢ Renewed interest in the context of explainable AI (XAI) and the “third-wave of AI”.
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Phil Wadler “What does logic have to do with Java?” 2009

https://www.youtube.com/watch?v=KYeys_in_Ng
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