
Informatics 2D: Tutorial 2

Informed Search and Constraint Satisfaction

Week 3

1 Informed Search

We saw in the lectures a graph representing the road map of part of Romania, see Figure 1. The cost
of a path is the distance via the road, as given on the graph. We also have a table of straight-line
distances from each town to Bucharest.

(a) Show that using greedy best-first search with the straight-line heuristic function, hSLD, does
not give an optimal solution when looking for a path from Arad to Bucharest.

(b) Suppose that you have the following straight-line distances from Fagaras to: Neamt 140km, Iasi
175km, Vaslui 175km, Urziceni 180km, Hirsova 230km, Giurgiu 220km, Pitesti 50km, Rimnicu
Vilcea 50km, Craiova 180km, Sibiu 60km. What happens when you try to use greedy best-first
search to find a path from Iasi to Fagaras?

(c) We can use A∗ search in this problem; hSLD is an admissible heuristic that can be combined
with the actual distance of the path so far to get a new heuristic f . Show that f finds an optimal
solution in part (a) and solves the problem in part (b).

Answers

For both greedy best-first search and A∗search you should go through (at least some of) the search
tree, and show which nodes are expanded. Below are the search graphs for greedy best-first search
and A∗ search for the Arad to Bucharest problem (taken from R&N).

(a) Greedy best-first search should find the route Arad → Sibiu → Fagaras → Bucharest, which is
450km. But the route Arad → Sibiu → Rimnicu Vilcea → Pitesti → Bucharest is 418km.

(b) Greedy best-first search should loop between Neamt and Iasi, since the heuristic value of Neamt
is less than the heuristic value of Vaslui.

1



Figure 1: The Romania map from R&N with a table of straight-line distances to Bucharest

2



Figure 2: Search graph for greedy best-first search for the Arad to Bucharest problem (taken from
R&N).

3



Figure 3: Search graph for A* search for the Arad to Bucharest problem (taken from R&N)

4



(c) A∗ search should find the route Arad → Sibiu → Rimnicu Vilcea → Pitesti → Bucharest for
part (a), and the route Iasi → Vaslui → Urziceni → Bucharest → Fagaras for part (b).

For (b) the A∗ values are (for the initial transition):
f(Neamt) = 140 + 87 = 227
f(Iasi) = 175 = 175
f(Vaslui) = 175 + 92 = 267
f(Urziceni) = 180 + 234 = 414
f(Bucharest) = 176 + 319 = 495
f(Hirsova) = 230 + 332 = 562
f(Giurgui) = 220 + 319 = 539
f(Pitesti) = 50 + 420 = 470
f(Fagaras) = 0 + 530 = 530
f(Rimnicu Vilcea) = 50 + 517 = 567
f(Craiova) = 180 + 558 = 738

2 Heuristics

(Taken from R&N Chapter 3)

Sometimes there is no good evaluation function for a problem, but there is a good comparison
method: a way to tell whether one node is better than another, without assigning numerical values
to either. Show that this is enough to do a Best-First search. Is there an analog for A∗?

Answers

If we assume the comparison function is transitive, then we can sort a list of nodes using it, and
choose the node that is at the head of the list.

A∗ relies on the division of the total cost estimate f(n) into the cost-so-far and the cost- to-go.
If we have comparison operators for each of these, then we can prefer to expand a node that is
better than other nodes on both comparisons. Unfortunately, there may not be a node with these
properties. In which case, the tradeoff between g(n) and h(n) cannot be realized without numerical
values.

3 The Crop Allocation Problem

Consider the following problem in bio-dynamic farming (where some crops grow better next to
particular crops)1 for the specific land division shown in Figure 4.

1Adapted from an original problem set by Mellish & Fisher

5



s1
s2

s4

s3

Figure 4: The Bio-Dynamic Farming Problem

The figure shows the allocation of a piece of land for planting four different crops using the con-
straints of bio-dynamic farming. In this kind of farming, the idea is that there are groups of crops
that develop better if set in particular arrangements. Also the balance of nutrients in the soil is used
to decide what to plant where. Here are the constraints according to the current levels of nutrients
in the soil:

1. Sector 1 (s1) can be planted with one of the following crops: {cabbage, kale, broccoli,
cauliflower }

2. Sector 2 (s2) can be planted with one of the following crops: {cabbage, kale, broccoli}

3. Sector 3 (s3) can be planted with one of the following crops: {kale}

4. Sector 4 (s4) can be planted with one of the following crops: {kale, broccoli}

The constraint here is that we do not want two sectors that are adjacent to each other to be planted
with the same crops

How does this look when expressed as a constraint satisfaction problem (CSP)? What are the stages
that the AC-3 algorithm goes through in obtaining arc consistency for this example? (see Figure 5
for the AC-3 algorithm)

6



Figure 5: The AC-3 algorithm

Answer

Variables: s1, s2, s3 and s4

Domains.

domain(s1, [cabbage, kale, broccoli, cauliflower]).
domain(s2, [cabbage, kale, broccoli]).
domain(s3, [kale]).
domain(s4, [kale, broccoli]).

Constraints:

s1 ̸= s2 ̸= s3 ̸= s4

AC-3

The initial queue is:

[s1→s2, s1→s3, s1→s4, s2→s3, s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3]

The stages of the following can be shown incrementally on the board. You will want to show the
values lists (domains) for the variables being updated as this all takes place.

Don’t feel that you have to see this question through to the end, if the students understand the
algorithm.

queue is

7



[s1→s2, s1→s3, s1→s4, s2→s3, s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3]

Revise (s1→s2) = False

queue is

[s1→s3, s1→s4, s2→s3, s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3]

Revise (s1→s3) = True, domain(s1,[cabbage,broccoli,cauliflower])
add []

queue is

[s1→s4, s2→s3, s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3]

Revise (s1→s4) = False

queue is

[s2→s3, s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3]

Revise (s2→s3) = True, domain(s2,[cabbage,broccoli])
add [s1→s2]

queue is

[s2→s4, s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s2→s4) = False

queue is

[s3→s4, s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s3→s4) = False

queue is

[s2→s1, s3→s1, s4→s1, s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s2→s1) = False

queue is

[s3→s1, s4→s1, s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s3→s1) = False

queue is [s4→s1, s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s4→s1) = False

queue is

8



[s3→s2, s4→s2, s4→s3, s1→s2]

Revise (s3→s2) = False

queue is

[s4→s2, s4→s3, s1→s2]

Revise (s4→s2) = False

queue is

[s4→s3, s1→s2]

Revise (s4→s3) = True, domain(s4,[broccoli])
add [s1→s4, s2→s4]

queue is

[s1→s2, s1→s4, s2→s4]

Revise (s1→s2) = False

queue is

[s1→s4, s2→s4]

Revise (s1→s4) = True, domain(s1,[cabbage,cauliflower])
add [s2→s1, s3→s1]

queue is

[s2→s4, s2→s1, s3→s1]

Revise (s2→s4) = True, domain(s2,[cabbage])
add [s1→s2, s3→s2]

queue is

[s2→s1, s3→s1, s1→s2, s3→s2]

Revise (s2→s1) = False

queue is

[s3→s1, s1→s2, s3→s2]

Revise (s3→s1) = False

queue is

[s1→s2, s3→s2, s4→s2]

9



Revise (s1→s2) = True, domain(s1,[cauliflower])
add [s3→s1, s4→s1]

queue is

[s3→s2, s4→s2, s3→s1, s4→s1]

Revise (s3→s2) = False

queue is

[s4→s2, s3→s1, s4→s1]

Revise (s4→s2) = False

queue is

[s3→s1, s4→s1]

Revise (s3→s1) = False

queue is

[s4→s1]

Revise (s4→s1) = False

queue is []

10


