
Informatics 2D: Tutorial 4

Satisfiability and First-Order Logic

Week 5

1 DPLL algorithm

The DPLL algorithm consists of the following steps:

• Convert proposition to CNF

• Loop through the following until a satisfying assignment is found or none is possible:

– Loop through the following simplifications until the formula can’t be simplified any-
more:

* Pure literal heuristic.

* Unit Clause heuristic.

– Select a variable and branch the search space into a formula where the variable is true
and a formula where the variable is false. (This means that you try the algorithm re-
cursively upon these new formulae, with a satisfying assignment for one of the new
formula being a satisfying assignment for the original).

Your lecture notes and R&N chapter 7 section 6 describe the steps in more detail.

Question: Use the DPLL algorithm to show whether the following propositional formulae is sat-
isfiable:

S1,1 ∧ (S1,1 ⇔ W1,2 ∨ W1,1 ∨ W2,1) ∧ ¬((W1,2 ∧ P1,2) ∨ (W2,1 ∧ P2,1)) ∧ ¬P1,1 ∧ ¬((W1,1 ∧
W2,1) ∨ (W1,1 ∧W1,2))

Answers

The proposition consists of the following conjuncts:

• S1,1

• ¬P1,1

1



• S1,1 ⇔ W1,2 ∨W1,1 ∨W2,1

• ¬((W1,2 ∧ P1,2) ∨ (W2,1 ∧ P2,1))

• ¬((W1,1 ∧W2,1) ∨ (W1,1 ∧W1,2))

Converting each into CNF:

S1,1 ⇔ W1,2 ∨W1,1 ∨W2,1

• S1,1 ⇒ W1,2 ∨W1,1 ∨W2,1 ∧W1,2 ∨W1,1 ∨W2,1 ⇒ S1,1

• (¬S1,1 ∨W1,2 ∨W1,1 ∨W2,1) ∧ ((¬W1,2 ∧ ¬W1,1 ∧ ¬W2,1) ∨ S1,1)

• (¬S1,1 ∨W1,2 ∨W1,1 ∨W2,1) ∧ (¬W1,2 ∨ S1,1) ∧ (¬W1,1 ∨ S1,1) ∧ (¬W2,1 ∨ S1,1)

¬((W1,2 ∧ P1,2) ∨ (W2,1 ∧ P2,1))

• ¬(W1,2 ∧ P1,2) ∧ ¬(W2,1 ∧ P2,1)

• (¬W1,2 ∨ ¬P1,2) ∧ (¬W2,1 ∨ ¬P2,1)

¬((W1,1 ∧W2,1) ∨ (W1,1 ∧W1,2))

• (¬W1,1 ∨ ¬W2,1) ∧ (¬W1,1 ∨ ¬W1,2)

So the CNF formula has the following conjuncts:

• S1,1

• ¬P1,1

• ¬S1,1 ∨W1,2 ∨W1,1 ∨W2,1

• ¬W1,2 ∨ S1,1

• ¬W1,1 ∨ S1,1

• ¬W2,1 ∨ S1,1

• ¬W1,2 ∨ ¬P1,2

• ¬W2,1 ∨ ¬P2,1

• ¬W1,1 ∨ ¬W2,1

• ¬W1,1 ∨ ¬W1,2

Which has pure literals ¬P1,1, ¬P1,2 and ¬P2,1 and the unit clauses with literals S1,1 and ¬P1,1.

2



So we assign S1,1 to true and P1,1, P1,2 and P2,1 to false which, using early termination, leaves us
with:

• W1,2 ∨W1,1 ∨W2,1

• ¬W1,1 ∨ ¬W2,1

• ¬W1,1 ∨ ¬W1,2

There are no more simplifications to make so we must pick a literal and branch on it, choosing
W1,2 and assigning it to true leaves:

• ¬W1,1 ∨ ¬W2,1

• ¬W1,1

Assigning W1,1 to false, since ¬W1,1 is a unit clause literal, satisfies the remaining clauses.

This gives us an assignment of S1,1 and W1,2 to true and P1,1, P1,2, P2,1, W1,1, and to false. Note
that we have not assigned W2,1 to either true or false, since in either case we have a satisfying
assignment.

2 First-Order Logic

Part 1: Represent the following sentences in first-order logic. You will have to define a vocabulary
(which should be consistent between sentences).

1. Some students took French in spring 2001.

2. Every student who takes French passes it.

3. Only one student took Greek in spring 2001.

4. The best score in Greek is always higher than the best score in French.

5. There is a male barber who shaves all the men who do not shave themselves.

Part 2: Write down a first-order logic sentence such that every world in which it is true contains
exactly one object.

2.1 Answer

Part 1: An example vocabulary might be:

• French - a constant denoting the subject French

• Greek - a constant denoting the subject Greek

3



• student/1 - a unary relation, student(x) iff constant x is a student (unnecessary if the took
relation is defined to only apply to students)

• took/3 - a ternary relation, took(x, y, t) iff x took the subject y during time interval t (there
are alternatives to having time as an argument to the took relation. You could represent this
as a course event, e.g. course(e) ∧ during(e, t) ∧ took(x, e) ∧ subject(y, e))

• pass/2 - a binary relation, pass(x, y) iff x passes the subject y

• Spring2001 - a constant denoting the time interval spring 2001

• bestScore/2 - a binary function which identifies the best score in a subject during a given
time interval.

• greaterThan/2 - a binary relation which has the same meaning as >

• equals/2 - a binary relation which has the same meaning as = (note that it’s acceptable to
assume that we are using first-order logic with equality, provided that the student knows what
this means).

• numOfStudents/2 - a binary function which identifies the number of students in taking a
subject during a given time interval.

• barber/1 - a unary relation, barber(x) iff x is a barber.

• shaves/2 - a binary relation, shaves(x, y) iff x shaves y.

Given this vocabulary you can represent the sentences as follows:

1. ∃x.student(x) ∧ took(x, French, Spring2001)

2. ∀x, t.student(x) ∧ took(x, French, t) ⇒ pass(x, French) (this is slightly vague, since a
student could fail and then pass on the second attempt)

3. equals(numOfStudents(Greek, Spring2001), 1) (the challenge here is to represent the
cardinality of the set of students taking Greek during spring 2001). An alternative is ∃x.student(x)∧
took(x,Greek, Spring2001)∧ (∀y.took(y,Greek, Spring2001) ⇒ x = y). This formula
asserts that there exists a student who took Greek in spring 2001 and if there is anything else
which took Greek in spring 2001 then it must be this student. So it would be impossible to
satisfy this sentence if less than one student took Greek in spring 2001, since we have as-
serted the existence of at least one student with this property. But also impossible to satisfy
it if more than one student took Greek in spring 2001, since in that case there would be a y
such that took(y,Greek, Spring2001) ∧ y ̸= x.

4. ∀t.greaterThan(bestScore(Greek, t), bestScore(French, t))

5. ∃x.barber(x) ∧ ∀y.¬shaves(y, y) ⇒ shaves(x, y) - (almost) Russell’s paradox, there is
no barber with this property as if there was then it would be possible to prove that the

4



shaves(Barber,Barber) and ¬shaves(Barber,Barber) (N.B. Russell’s paradox is that
there is a barber who shaves all and only the men who do not shaves themselves - this is an
equivalence, ⇔, rather than an implication)

Part 2: One possible sentence is ∀x.P (x) ∧ ¬∃x.x ̸= A ∧ P (A); which means that for all objects
property P holds and there are no objects not equal to object A such that property P holds. So if
this sentence is true then there can only be one object, A, in the domain of interpretation. If there
were any other objects then they would have to have property P and not have property P in order
to satisfy this sentence, which is impossible. A simpler alternative is ∃x∀y.x = y; which means
that there exists an object such that all other objects are equivalent to this object, so there is only
one unique object in the domain.

3 Most General Unifier (MGU)

The most general unifier (MGU) is the least constrained substitution that makes two clauses unify
with each other. What is the MGU for each pair of clauses below? If there is no MGU, explain
why.

The Unify algorithm in figure 1 (also in R&N Section 9.2, p.328.)

Figure 1: Unification Algorithm.

5



1. p(A, B, B) and p(x, y, z)

2. q(y, g(A, B)) and q(g(x, x), y )

3. older(father(y), y) and older(father(x), John)

4. knows(father(y), y) and knows(x, x)

Note that, constants are upper case (e.g. A, B) and variables are lower case (e.g. x, y, z).

Answer

1. x/A, y/B, z/B

2. Unification fails. Start with the (partial) substitution y/g(x,x), then add x/A to get y/g(x,x),
x/A. At this point, one clause is q(g(A, A), g(A, B)), and the other q(g(A, A), g(A, A)). Since
q(A, A) cannot be unified with q(A,B) unification fails.

3. x/John, y/John

4. Unification fails. Start with (partial) substitution x/father(y). One clause is now knows(father(y),y),
and the other knows(father(y),father(y)). Unification fails here because we can’t unify y and
father(y), due to the occurs check.

6


