
Informatics 2D Tutorial 6

PDDL, State-Space Search and Partial-Order

Planning

Week 7

Task Description

You ask your personal robotic assistant to make you some tea. Your robot then
needs to find a sensible plan that satisfies your request.

Part 1: Representing the World using PDDL

Use the Planning Domain Definition Language (PDDL) to represent your world.

1. You will first need to define the predicates that will then be used to de-
scribe the states in your world. You can define atemporal predicates that
describe objects. Atemporal predicates do not change with the execution
of actions. You can also define fluent predicates that can change with the
execution of actions. To make tea you will need:

• Water that can be either hot or cold (not hot), and can be in a bottle,
kettle or a cup.

• A kettle that can be empty or not empty.

• A cup that can be empty or not empty.

• A bottle that can be empty or not empty.

• A tea bag that can either be in the cup or not in the cup.

2. Define an initial state where the tea bag is not in the cup, cold water is
in the bottle, and all of the other containers are empty.

3. Formally describe the goal state of the plan. In this case the goal is to
have tea (a cup full of hot water with a tea bag in it).

4. Define the following actions in terms of the preconditions that must hold
prior to taking the action, and the effects that describe the changes made
to the world after executing the action:

1



• Pour: An action that allows you to pour water from one container to
another.

• AddTeaBag: An action that allows you to place a tea bag into the
cup.

• BoilWaterInKettle: An action that allows you to use the kettle to
boil the water.

Part 1: Solutions

1. For each object define an atemporal predicate:

water(x), bottle(x), kettle(x), cup(x), teabag(x)

For each property define a fluent predicate:

in(x, y), hot(x), empty(x)

Where in(x, y) means x is inside y.

Atemporal prediactes and fluent predicates have the same notation, how-
ever, atemporal predicates do not change as a result of actions while fluents
do.

2. Initial State: water(W ) ∧ bottle(B) ∧ kettle(K) ∧ cup(C) ∧ teabag(T ) ∧
in(W,B) ∧ empty(K) ∧ empty(C)

Since we are using the closed world assumption we only describe what is
true about the world. For example, we do not need to specify ¬hot(W ).

3. Goal State: water(W )∧teabag(T )∧cup(C)∧in(W,C)∧hot(W )∧in(T,C).

The goal state could contain negations; however, in this case there aren’t
any.

4. The actions would be:
Action(Pour(x, from, to))
precondition: water(x) ∧ in(x, from) ∧ ¬in(x, to) ∧ empty(to)
effect: ¬in(x, from) ∧ in(x, to) ∧ ¬empty(to) ∧ empty(from)

In this case, we need to make sure that from and to are either a cup,
kettle or bottle, and want to avoid allowing the planner combine them
with any other objects. Since writing this disjunctively is not allowed, we
need to find a way around this. One was is to introduce a new predicate
vessel(x) that is initialised as true for objects of the type cup, kettle, and
bottle, and then add a precondition that to and from should be vessels,
as follows:

Action(Pour(x, from, to))
precondition: water(x)∧in(x, from)∧¬in(x, to)∧empty(to)∧vessel(to)∧

2



vessel(from)
effect: ¬in(x, from) ∧ in(x, to) ∧ ¬empty(to) ∧ empty(from)

Action(AddTeaBag(t, c))
precondition: teabag(t) ∧ cup(c) ∧ ¬in(t, c)
effect: in(t, c)

Action(BoilWaterInKettle(w, k))
precondition: water(x) ∧ kettle(k) ∧ ¬hot(w) ∧ in(w, k)
effect: hot(w)

Part 2: Partial-Order Planning

Create a partial-order plan that takes you from the initial state to the goal state.
Show which actions depend on one another and which actions do not. What is
the advantage of partial-order planning over state-space search?

Part 2: Solutions

The plan branches out from the initial state START in two routes;
1) START → Pour(W,B,K)→ BoilWaterInKettle(W,K)

→ Pour(W,K,C)→ FINISH
2) START → AddTeaBag(T,C)→ FINISH
Combining these two routes results in a complete plan from the START state
to the goal. The arrows show the dependency between the actions.

The advantage of partial-order planning over state-space search has to do
with the flexibility of the order of the actions. Another advantage is efficiency of
the planning process as one partially ordered plan can represent several totally
ordered ones, so you are effectively searching the plan space in parallel.

3


