
INF2D – Reasoning and Agents

Coursework 2: Symbolic Planning

TA: Jay Park (jay.jh.park@ed.ac.uk)

1

Learning Objectives

• Gain hands-on experience of designing ‘effective & efficient’ formal
representations of planning problems
• Learn how to code in PDDL, a declarative language for formally expressing

planning problems

• Understand how performance of a planning algorithm may be
affected by different factors, including:
• Parameters to the planning algorithm

• Your design choices!

2

Coursework outline

• High-level goal: Design symbolic planning domains that model
scenarios involving a robot shopping in a supermarket
• Open-ended task requiring your own decisions about abstraction

• No single ‘correct’ design… but there are such things as inefficient designs!

• CW2 is broken down into three tasks:
• Modelling (35%)

• Experiment (15%)

• Extensions (50%)

3

Task 1: Modelling

• Scenario
• A SHOPBOT is tasked to shop for all of

the shopping items specified by the
provided shopping list

• A shopping item can be picked up if
SHOPBOT is standing next to the shelf
containing the item
• If an item needs weighing (), SHOPBOT

needs to weigh it at the weighing scale
before checking it out

• An item is considered ‘shopped’ if it is
placed on the checkout stand and
checked out

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18

19 20

Cabbage Potato

Bread Ketchup

Toothpaste Shampoo

Ice Lolly Pizza

Shopping List

- Potato
- Ketchup
- Toothpaste
- Pizza

Task 1: Modelling

• Scenario (cont’d)
• The layout of a supermarket consists of

aisle cells (numbered squares in the
figure), shelves (squares with shopping
items), a weighing scale and a checkout
stand

• A MINEBOT can occupy and move
between two adjacent aisle cells
• No diagonal movements!

• A MINEBOT can pick up at most one
object – iff it is not already holding
anything

5

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18

19 20

Cabbage Potato

Bread Ketchup

Toothpaste Shampoo

Ice Lolly Pizza

Shopping List

- Potato
- Ketchup
- Toothpaste
- Pizza

Task 1: Modelling

• Programming in PDDL (Planning Domain Definition Language)
• A declarative programming language

• Specifies what problems to solve, NOT how to solve problems

• Solving of the planning problems is entirely delegated to the Metric FF planner

• A PDDL representation of planning problems consists of:
• One PDDL domain file, defining the “universal” aspects of problems

• One or more PDDL problem files, each instantiating a particular planning problem

6

Task 1: Modelling

• Anatomy of a PDDL domain file
• (Example in handout)

(define (domain blocks-world)
 (:requirements :adl)

 (:types table block)

 (:predicates
 (On ?x - block ?y - object)
 (Clear ?b - object)
)

 (:constants Table - table)

(cont’d in next slide…)

Some domain name
of your choice

Similar to importing packages in other
languages; would only need minimal

modifications when necessary

Declaration of object ‘types’
in this domain

Declaration of predicates, by their
names and arguments

Declaration of ‘constant’ entities
that will be present in all problem

instances in the domain

7

Task 1: Modelling

• Anatomy of a PDDL domain file
• (Example in handout)

(cont’ing from previous slide…)

 (:action MOVE-TO-TABLE
 :parameters (?b - block ?x - block)
 :precondition (and (On ?b ?x) (Clear ?b) (not (= ?b ?x)))
 :effect (and (On ?b Table) (Clear ?x) (not (On ?b ?x)))
)
)

Declaration of an action schema, by its name,
parameters, preconditions and effects

Implementation of:
 Action(MoveToTable(b, x),
 Precond: On(b, x) ∧ Clear(b) ∧ b≠x)
 Effect: On(b, Table) ∧ Clear(x) ∧ ¬On(b, x))

8

Task 1: Modelling

• Anatomy of a PDDL problem file
• (Example in handout)

(define (problem block-problem)
 (:domain blocks-world)
 (:objects
 A B C - block
)

 (:init
 (On A Table) (On B Table) (On C Table)
 (Clear A) (Clear B) (Clear C)
)
 (:goal (and
 (On A B)
 (On B C)
))
)

Some problem
name of your choice

Specification of the planning domain
for the problem (defined earlier)

Objects existing in the scope of
the problem and their types

Initial state specification

Goal specification
9

A B C C

B

A

Task 1: Modelling

• Testing your domains & problems
• You can test your PDDL domain & problem files locally before submitting by

running the Metric FF planner included in the handout (binary executable
with the name ff)

• To run the planner, execute the following command on your shell, in the
directory you unzipped the handout:

./ff –o {domain_file_name} –f {problem_file_name}

10

Task 1: Modelling

• Typical planner result output:

11

Prints a valid plan
if found one

Quantitative measures relevant
to planner performance

Search configuration selected

State space search
progress monitor

Task 2: Experiment

• Now that we have our first suite of planning domain & problems, let’s
conduct some experiments…

• Task 2.1: Design a harder problem
• The planning problem instance encoded in Task 1.2 is not challenging enough

for the Metric FF planner

• Can you come up with a harder problem that would further distress the
Metric FF planner?
• Make it challenging enough that you can observe more noticeable differences in planner

performance in the next task

• Justify your design choice in your report

12

Task 2: Experiment

• Task 2.2: Extensive evaluation of planner performance
• By default, the Metric FF planner runs a faster – yet incomplete – heuristics-

based algorithm (enforced hill-climbing) to solve a PDDL planning problem

• If the Metric FF fails to find a legitimate plan at the first attempt, then it falls
back to a more thorough heuristics-based best-first search to try again…
• … using the following evaluation function for a state 𝑠:

𝑓 𝑠 = 𝑤𝑔𝑔 𝑠 + 𝑤ℎℎ(𝑠)

where 𝑔 𝑠 is the actual cost accumulated so far, ℎ 𝑠 is the estimated cost hereafter from
𝑠 to the goal, and 𝑤𝑔 (default: 1) & 𝑤ℎ (default: 5) are integer weight parameter

13

Task 2: Experiment

• Task 2.2: Extensive evaluation of planner performance (cont’d)
• Experiment question: How does our choice of (𝑤𝑔 , 𝑤ℎ) affect the planner

performance?

• Design a suite of experiments to evaluate the effect of setting different
(𝑤𝑔, 𝑤ℎ) values on the performance. Analyse the results in your report.

• To start a single run with an experiment configuration, execute the following
command on your shell:

./ff –E –g {value of 𝑤𝑔} –h {value of 𝑤ℎ} –o {domain_file_name} –f {problem_file_name}

Flag for disabling the default
hill-climbing search algorithm

14

Task 3: Extensions

• One could argue the domain we have designed in Task 1 is rather too
simple and still misses out many aspects of the real-world scenarios…

• Incrementally extend your domain to accommodate the following
scenarios, and write problem files as specified in the handout:
• Task 3.1: Now a SHOPBOT can opt to carry a shopping basket, which can contain

multiple shopping items.

• Task 3.2: Now the prices of shopping items are explicitly considered. SHOPBOT

should have sufficient credit balance when checking out items, and more
credits can be acquired at a top-up station. (hint: numeric fluents)

• Task 3.3: Now there might be more than one SHOPBOTs in a supermarket
shopping around. We don’t want them bump into each other.

15

https://planning.wiki/ref/pddl21/domain

Task 3: Extensions

• Extend your domain (cont’d):
• Task 3.4: Extra challenge; freely motivate, design and implement another real-

world-like aspect of your own, describe and justify in your report

16

•A word of caution
• Please do not attempt this subtask unless the CW so far was a breeze, and

prior tasks took less than 10 hours to perfect

• We will be seriously picky when marking this part; we expect extensions and
reports that go well beyond our expectations to warrant a meaningful mark
• We’d like to encourage you to prioritise other important tasks (e.g. refining answers to

previous parts, other CWs, even catching up on sleep) before spending time on this
subtask, in the interest of efficiency ☺

Submission

• We will use Gradescope for both submitting and marking

• Follow the submission instruction in Gradescope as specified in the
handout, having your submission files named accurately

• Autograder will verify the submitted PDDL files are syntactically valid
and plans are generated in a reasonable timeframe
• You can submit as many times as you want, up until submission deadline

• Your latest submission will be marked

• For late submission policy, consult the handout pdf

• Export your report as a pdf file

17

Getting support

• Labs
• CW2 clinic sessions start on Friday in Week 7 (8th March)

• Exploit the lab sessions if you feel you could use some help from our
demonstrators or fellow coursemates

• Piazza
• Whenever you have questions, ask away; public questions are encouraged

and may help other fellow students as well, though you can choose to post
private questions only visible to course staff

• Please do not ask anyone to just give away solutions!

• Also, do not give away your solutions to anyone!
18

19

	Slide 1: INF2D – Reasoning and Agents
	Slide 2: Learning Objectives
	Slide 3: Coursework outline
	Slide 4: Task 1: Modelling
	Slide 5: Task 1: Modelling
	Slide 6: Task 1: Modelling
	Slide 7: Task 1: Modelling
	Slide 8: Task 1: Modelling
	Slide 9: Task 1: Modelling
	Slide 10: Task 1: Modelling
	Slide 11: Task 1: Modelling
	Slide 12: Task 2: Experiment
	Slide 13: Task 2: Experiment
	Slide 14: Task 2: Experiment
	Slide 15: Task 3: Extensions
	Slide 16: Task 3: Extensions
	Slide 17: Submission
	Slide 18: Getting support
	Slide 19

