Informatics 2D: Reasoning and Agents

Alex Lascarides

Lecture 20: Acting under Uncertainty

Where are we?

Last time ...

- Previous part of course discussed planning as an efficient way of determining actions that will achieve goals
- Used more elaborate representations than in search, but avoided full complexity of logical reasoning
- Allowed uncertainty to some extent (e.g. conditional planning, replanning)
- However the approaches seen so far don't allow for a quantification of uncertainty

Today ...

Acting under uncertainty

Handling uncertain knowledge

- So far we have always assumed that propositions are assumed to be true, false, or unknown
- But in reality, we have hunches rather than complete ignorance or absolute knowledge
- Approaches like conditional planning and replanning handle things that might go wrong
- But they don't tell us how likely it is that something might go wrong...
- And rational decisions (i.e. 'the right thing to do') depend on the relative importance of various goals and the likelihood that (and degree to which) they will be achieved

Handling uncertain knowledge

- To develop theories of uncertain reasoning we must look at the nature of uncertain knowledge
- Example: rules for dental diagnosis
 - A rule like $\forall p \ Symptom(p, Toothache) \Rightarrow Disease(p, Cavity)$ is clearly wrong
 - Disjunctive conclusions require long lists of potential diagnoses:

```
\forall p \ Symptom(p, Toothache) \Rightarrow
Disease(p, Cavity) \lor Disease(p, GumDisease) \lor Disease(p, Abscess)...
```

- Causal rules like $\forall p \ Disease(p, Cavity) \Rightarrow Symptom(p, Toothache) \ can also$ cause problems
- Even if we know all possible causes, what if the cavity and the toothache are not connected?

Uncertain knowledge, logic, and probabilities

- Clearly, using (classical) logic is not very useful to capture uncertainty, because of ...
 - complexity (can be impractical to include all antecedents and consequents in rules, and/or too hard to use them)
 - theoretical ignorance (don't know a rule completely)
 - practical ignorance (don't know the current state)
 - How likely an unknown factor is influences how we reason and act
- One possible approach: express degrees of belief in propositions using probability theory

 Probability can summarise the uncertainty that
 - Probability can summarise the uncertainty that comes from our 'laziness' and ignorance
- Probabilities between 0 and 1 express the degree to which we believe a proposition to be true

Degrees of belief and probabilities

- In probability theory, propositions themselves are actually true or false!
- Degrees of truth are the subject of other methods (like fuzzy logic) not dealt with here
- Degrees of belief depend on evidence and should change with new evidence
- Don't confuse this with change in the world that might make the proposition itself true or false!
- Before evidence is obtained we speak of prior/unconditional probability, after evidence of posterior probability

Uncertainty and rational decisions

- Logical agent has a goal and executes any plan guaranteed to achieve it
- Different with degrees of belief: If plan P has a 90% chance of success, how about another P' with a higher probability? Or how about P" with higher cost but same probability?
- Agent must have preferences over outcomes of plans
- Utility theory can be used to reason about those preferences
- Based on idea that every state has a degree of usefulness and agents prefer states with higher utility
- Utilities vary from one agent to another.

Decision theory

- A general theory of rational decision making
- Decision theory = probability theory + utility theory
- Foundation of decision theory:

An agent is rational if and only if it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action

- Principle of Maximum Expected Utility
- Although we follow it here, some points of criticism:
 - Knowledge of preferences?
 - Consistency of preferences?
 - Risk-taking attitude?

Are We Rational?

A: 100% chance of £3000 C: 25% chance of £3000 B: 80% chance of £4000 D: 20% chance of £4000

- 84% of you chose lottery A over lottery B.
- 77% of you chose lottery D over lottery C.
- So lots of you chose A and D, which is irrational!
 - If U(3000) > 0.8 * U(4000), then 0.25 * U(3000) > 0.2 * U(4000)!!
- Our ability to MEU also affected by emotion, social relationships, relationships among our choices...
- In fact, we're predictably irrational.
- If we were always rational, we wouldn't have self-help, life coaches etc

Utility of money (empirical study)

 For most people concave curve (a), showing that going into debt is considered disastrous relative to small gains in money—risk averse.

 But if you're already \$10M in debt, your utility curve is more like (b)—risk seeking when desperate!

Design for a decision-theoretic agent

- For the time being, we will focus on probability and not utility.
- But still useful to have an idea of general abstract design for a decision-theoretic (utility-based) agent
- Characterised by basic perception-action loop as follows:
 - Update belief state based on previous action and percept
 - Calculate outcome probabilities for actions given action descriptions and belief states
 - Select action with highest expected utility given probabilities of outcomes and utility information
- Very simple but broadly accepted as a general principle for building agents able to cope with real-world environments

Propositions & atomic events

- Degrees of belief concern propositions
- Basic notion: random variable, a part of the world whose status is unknown, with a domain (e.g. Cavity with domain (true, false))
- Can be boolean, discrete or continuous
- Can compose complex propositions from statements about random variables (e.g. Cavity = true ∧ Toothache = false)
- Atomic event = complete specification of the state of the world
 - Atomic events are mutually exclusive
 - Their set is exhaustive
 - Every event entails truth or falsehood of any proposition (like models in logic)
 - Every proposition logically equivalent to the disjunction of all atomic events that entail it

Propositions & atomic events

- Unconditional/prior probability = degree of belief in a proposition a in the absence of any other information
- Can be between 0 and 1, write as P(Cavity = true) = 0.1 or P(cavity) = 0.1
- Probability distribution = the probabilities of all values of a random variable
- Write P(Weather) = $\langle 0.7, 0.2, 0.1 \rangle$ for

$$P(Weather = sunny) = 0.7$$

$$P(Weather = rain) = 0.2$$

$$P(Weather = cloudy) = 0.1$$

Probability distributions/conditional probabilities

- For a mixture of several variables, we obtain a joint probability distribution (JPD) – cross-product of individual distributions
- A JPD ("joint") describes one's uncertainty about the world as it specifies the probability of every atomic event
- For continuous variables we use probability density function (we cannot enumerate values)
- Will talk about these in detail later
- Conditional probability P(a|b) = the probability of a given that all we know is b
- Example: P(cavity|toothache) = 0.8 means that if patient is observed to have toothache, then there is an 80% chance that he has a cavity

Conditional probabilities

- Can be defined using unconditional probabilities: $P(a|b) = \frac{P(a \land b)}{P(b)}$
- Often written as **product rule** $P(a \land b) = P(a|b)P(b)$
- Good for describing JPDs (which then become "CPDs") as P(X,Y) = P(X|Y)P(Y)
- Set of equations, not matrix multiplication (!):

$$P(X = x_1 \land Y = y_1) = P(X = x_1 | Y = y_1)P(Y = y_1)$$

$$P(X = x_1 \land Y = y_2) = P(X = x_1 | Y = y_2)P(Y = y_2)$$

$$\vdots$$

$$P(X = x_n \land Y = y_m) = P(X = x_n | Y = y_m)P(Y = y_m)$$

Conditional probability does not mean logical implication!

The axioms of probability

- Kolmogorov's axioms define basic semantics for probabilities:
 - 1. $0 \le P(a) \le 1$ for any proposition a
 - 2. P(true) = 1 and P(false) = 0
 - 3. $P(a \lor b) = P(a) + P(b) P(a \land b)$
- From this, a number of useful facts can be derived, e.g:
 - $P(\neg a) = 1 P(a)$
 - For variable D with domain $\langle d_1, \ldots, d_n \rangle$, $\sum_{i=1}^n P(D=d_i)=1$
 - And so any JPD over finite variables sums to 1
 - If e(a) is the set of atomic events that entail a, then (because they are mutually exclusive) it holds that

$$P(a) = \sum_{e_i \in e(a)} P(e_i)$$

 With this, we can calculate the probability of any proposition from a JPD

Example deriviation: $P(\neg a) = 1 - P(a)$

$$P(\neg a \lor a) = P(true) \qquad logic \\ = 1 \qquad axiom1 \\ = P(\neg a) + P(a) - P(\neg a \land a) \qquad axiom3 \\ = P(\neg a) + P(a) - P(false) \qquad logic \\ = P(\neg a) + P(a) - 0 \qquad axiom1 \\ = P(\neg a) + P(a) \qquad arithmetic \\ P(\neg a) = 1 - P(a) \qquad arithmetic$$

Summary

- Explained why logic in itself is insufficient to model uncertainty
- Discussed principles of decision making under uncertainty
 - Decision theory, MEU principle
- Probability theory provides useful tools for quantifying degree of belief/uncertainty in propositions
- Atomic events, propositions, random variables
- Probability distributions, conditional probabilities
- Axioms of probability
- Next time: Introduction to Coursework 2

