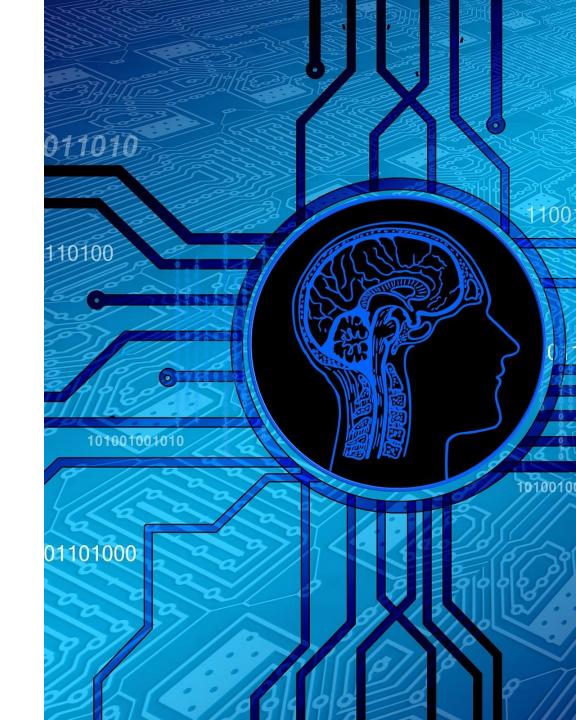
Revision (Logic)

Informatics 2D: Reasoning and Agents



Logical Agents: KBs

- Logical agents apply inference to a knowledge base to derive new information and make decisions.
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences with respect to models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- > Wumpus world requires the ability to represent partial and negated information
- > Propositional logic solves many problems but lacks expressive power.

$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \(\widehindrightarrow \) $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ commutativity of \vee $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \(\Lambda \) $((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$ associativity of \vee $\neg(\neg\alpha) \equiv \alpha$ double-negation elimination $(\alpha \rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha)$ contraposition $(\alpha \rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \leftrightarrow \beta) \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$ de Morgan $\neg(\alpha \vee \beta) \equiv (\neg\alpha \wedge \neg\beta)$ de Morgan $(\alpha \wedge (\beta \vee \gamma)) = ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$ distributivity of ∧ over ∨ $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$ distributivity of ∨ over ∧

Logical equivalence

Two sentences are logically equivalent iff true in the same models:

$$\alpha \equiv \beta$$
 iff $\alpha \models \beta$ and $\beta \models \alpha$

Validity and Satisfiability

A sentence is **valid** if it is true in *all models*

• true, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the **Deduction Theorem**

• $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in *some model*

• e.g., A v B, C

A sentence is **unsatisfiable** if it is true in *no models*

• e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:

- $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
- prove α by reductio ad absurdum

Effective Propositional Inference

- ➤ Two algorithms: DPLL & WalkSAT
 - DPLL is a decision procedure, i.e., it will return true (yes) or false (no) for a set of propositional clauses (cf. complete algorithm)
 - They work with Conjunctive Normal Form (CNF)

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

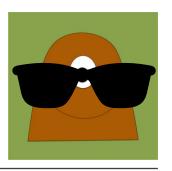
Improvements over truth table enumeration:

- 1. Early termination
- 2. Pure symbol heuristic
- 3. Unit clause heuristic

The WalkSAT algorithm

- Incomplete, local search algorithm
- > Evaluation function:
 - The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Algorithm checks for satisfiability by randomly flipping the values of variables
- ➤ Balance between greediness and randomness

First-Order Logic



- > objects and relations are semantic primitives
- > syntax: constants, functions, predicates, equality, quantifiers.
- Predicates (applied to terms) have a truth value (i.e., true or false)
 e.g., < (less than) is a predicate so, x < 3 + 5 is either true or false
- Functions just construct new terms out of other terms
- Increased expressive power: sufficient to define Wumpus world.
 Quantifiers, Equality ...

Unification and Generalised Modus Ponens

Rules for quantifiers UI, EI etc.

Reducing FOL to PL

Unification

Generalised modus ponens (GMP)

Most General Unifier (MGU)

Unifying Knows(John, x) and Knows(y, z)

$$\theta = \{y/John, x/z\}$$
 or $\theta = \{y/John, x/John, z/John\}$

The first unifier is more general than the second.

FOL: There is a **single** most general unifier (MGU) that is unique up to renaming of variables.

$$MGU = \{y/John, x/z\}$$

Can be viewed as an equation solving problem.

• i.e. solve $Knows(John, x) \stackrel{?}{=} Knows(y, z)$

MGU Exercises

- P(x,A) = ?= P(f(y),y)
- P(x,g(x)) = ?= P(f(y),y)

- Decomposition
- Conflict
- Eliminate
- Delete
- Switch
- Coalesce
- Occurs Check

Inference

- > Forward chaining
 - Informally: Unify all the assumptions in an implication rule with facts in KB to discharge them. If successful, add instantiated conclusion to KB.
 This is like a discovery process.
- Backward chaining
 - Informally: Unify conclusion of an implication rule with some fact in KB. If successful, add instantiated assumptions to KB as new goals.
 This is like a decomposition into sub-problems.

Resolution

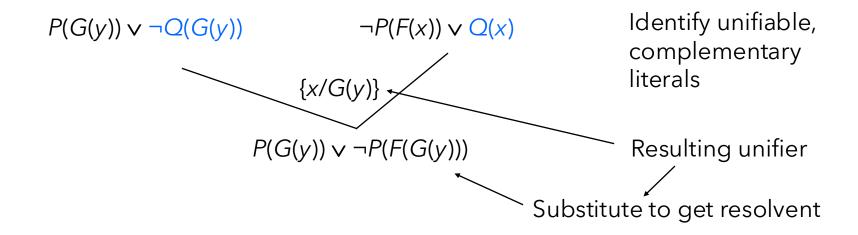
- > Formal statements for various types of resolution.
- Refutation method works by looking for a contradiction i.e., tries to derive falsity (empty clause).
- Need to negate the goal before converting it to clausal form.

Example

- 9. Which of the following clauses is the result of resolving clause $P(G(y)) \vee \neg Q(G(y))$ with clause $\neg P(F(x)) \vee Q(x)$, assuming they can be resolved?
 - (a) $P(G(y)) \vee \neg P(F(x))$.
 - (b) $Q(y) \vee \neg Q(F(y))$.
 - (c) Resolution fails.
 - (d) $P(G(y)) \vee P(F(G(y))) \vee \neg Q(G(y))$.
 - (e) $P(G(y)) \vee \neg P(F(G(y)))$.

Example

- 9. Which of the following clauses is the result of resolving clause $P(G(y)) \vee \neg Q(G(y))$ with clause $\neg P(F(x)) \vee Q(x)$, assuming they can be resolved?
 - (a) $P(G(y)) \vee \neg P(F(x))$.
 - (b) $Q(y) \vee \neg Q(F(y))$.
 - (c) Resolution fails.
 - (d) $P(G(y)) \vee P(F(G(y))) \vee \neg Q(G(y))$.
 - (e) $P(G(y)) \vee \neg P(F(G(y)))$.



Thank you!