
Informatics 2D Coursework 2: Symbolic Planning

Nick Ferguson and Craig Innes

Due at 12:00 on 27th March 2025



Acknowledgements

Coursework Design, Slides, Teaching
Assistance: Nick Ferguson



Learning Objectives

Gain hands-on experience of designing effective and efficient formal representations
of planning problems by implementing a simple planning domain and problem in PDDL.

Understand how the performance of a planning algorithm may be affected by
different factors, such as the parameters of the evaluation function and your design
choices.



Learning Objectives

Gain hands-on experience of designing effective and efficient formal representations
of planning problems by implementing a simple planning domain and problem in PDDL.

Understand how the performance of a planning algorithm may be affected by
different factors, such as the parameters of the evaluation function and your design
choices.



Coursework Outline

High-level goals: design, implement and evaluate domain and problem files for a
delivery courier scenario using PDDL.
I Decisions about scenario design required - no single correct design, but there are

inefficient designs!

CW2 is broken down into three components, with the coursework as a whole worth 15%
of the overall course grade.
I Modelling (35 marks) Creating PDDL domain and problem files for a basic

scenario.
I Experiment (15 marks) Designing an experiment to evaluate the planner.
I Extensions (50 marks) Extending our scenario by implementing additional

features to bring it closer to the real world.



Coursework Outline

High-level goals: design, implement and evaluate domain and problem files for a
delivery courier scenario using PDDL.
I Decisions about scenario design required - no single correct design, but there are

inefficient designs!

CW2 is broken down into three components, with the coursework as a whole worth 15%
of the overall course grade.
I Modelling (35 marks) Creating PDDL domain and problem files for a basic

scenario.
I Experiment (15 marks) Designing an experiment to evaluate the planner.
I Extensions (50 marks) Extending our scenario by implementing additional

features to bring it closer to the real world.



Scenario Overview

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

I A road network on which a 🛵 Courier travels round, picking up and making
deliveries according to the list of orders.



🛵 Modelling (35 marks)

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

🛵 A Courier is required to make
deliveries according to a list of orders.

🍕 Each order is required to be picked up
from, and delivered to, a specific
location.

🌯 The courier can only pick up an item if
it is at the same location as that item.

🥤 The courier can only make a delivery if
they are at the location of the person
who placed the order and the item is in
their possession.

🍛 The road layout consists of nodes
connected by edges. Each person and
item is associated with a node.



🛵 Modelling (35 marks)

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

🛵 A Courier is required to make
deliveries according to a list of orders.

🍕 Each order is required to be picked up
from, and delivered to, a specific
location.

🌯 The courier can only pick up an item if
it is at the same location as that item.

🥤 The courier can only make a delivery if
they are at the location of the person
who placed the order and the item is in
their possession.

🍛 The road layout consists of nodes
connected by edges. Each person and
item is associated with a node.



🛵 Modelling (35 marks)

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

🛵 A Courier is required to make
deliveries according to a list of orders.

🍕 Each order is required to be picked up
from, and delivered to, a specific
location.

🌯 The courier can only pick up an item if
it is at the same location as that item.

🥤 The courier can only make a delivery if
they are at the location of the person
who placed the order and the item is in
their possession.

🍛 The road layout consists of nodes
connected by edges. Each person and
item is associated with a node.



🛵 Modelling (35 marks)

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

🛵 A Courier is required to make
deliveries according to a list of orders.

🍕 Each order is required to be picked up
from, and delivered to, a specific
location.

🌯 The courier can only pick up an item if
it is at the same location as that item.

🥤 The courier can only make a delivery if
they are at the location of the person
who placed the order and the item is in
their possession.

🍛 The road layout consists of nodes
connected by edges. Each person and
item is associated with a node.



🛵 Modelling (35 marks)

N7

N6

🌯

N4

N5

N2

N12 N13
🍕 👩🦰

N3

🍺🥤

N8

👵

🌮

N1

N10

👨

N9

N11 🍣

🛵

🍛
👴

🧌

Person Ordered

👨 🍺 Beer 
🍕 Pizza

👵 🍣 Sushi

👩🦰 🌯 Burrito 
🥤 Soda

👴 🍛 Curry

🧌 🌮 Taco

🛵 A Courier is required to make
deliveries according to a list of orders.

🍕 Each order is required to be picked up
from, and delivered to, a specific
location.

🌯 The courier can only pick up an item if
it is at the same location as that item.

🥤 The courier can only make a delivery if
they are at the location of the person
who placed the order and the item is in
their possession.

🍛 The road layout consists of nodes
connected by edges. Each person and
item is associated with a node.



🛵 Modelling (35 marks)

For this first task, you are required to create PDDL domain and problem files to
implement this basic delivery courier scenario.

Domain File (20 marks)
🍕 Define predicates and actions necessary for modelling movement around the

network, picking up deliveries, and making those deliveries.

Problem File (15 marks)
🌯 Define initial and goal states, reflecting the road layout and the list of orders.

Testing (0 marks)
🍣 Use the provided ff planner to test that your domain and problem files produce

plans.



🛵 Modelling (35 marks)

For this first task, you are required to create PDDL domain and problem files to
implement this basic delivery courier scenario.

Domain File (20 marks)
🍕 Define predicates and actions necessary for modelling movement around the

network, picking up deliveries, and making those deliveries.
Problem File (15 marks)
🌯 Define initial and goal states, reflecting the road layout and the list of orders.

Testing (0 marks)
🍣 Use the provided ff planner to test that your domain and problem files produce

plans.



🛵 Modelling (35 marks)

For this first task, you are required to create PDDL domain and problem files to
implement this basic delivery courier scenario.

Domain File (20 marks)
🍕 Define predicates and actions necessary for modelling movement around the

network, picking up deliveries, and making those deliveries.
Problem File (15 marks)
🌯 Define initial and goal states, reflecting the road layout and the list of orders.

Testing (0 marks)
🍣 Use the provided ff planner to test that your domain and problem files produce

plans.



Anatomy of a PDDL Domain File

PDDL is declarative: specify what to solve, not how to solve it – solving is left to the ff
planner.

Let’s use the classic ’block-world’ scenario as an example. First we name the domain
and declare requirements of our scenario.
(define (domain blocks-world-domain) ; Name of the domain

(:requirements :adl) ; Action Description Language

We can declare types of objects in our domain.
(:types table block - object) ; table and block are subtypes of object



Anatomy of a PDDL Domain File

PDDL is declarative: specify what to solve, not how to solve it – solving is left to the ff
planner.

Let’s use the classic ’block-world’ scenario as an example. First we name the domain
and declare requirements of our scenario.
(define (domain blocks-world-domain) ; Name of the domain

(:requirements :adl) ; Action Description Language

We can declare types of objects in our domain.
(:types table block - object) ; table and block are subtypes of object



Anatomy of a PDDL Domain File

PDDL is declarative: specify what to solve, not how to solve it – solving is left to the ff
planner.

Let’s use the classic ’block-world’ scenario as an example. First we name the domain
and declare requirements of our scenario.
(define (domain blocks-world-domain) ; Name of the domain

(:requirements :adl) ; Action Description Language

We can declare types of objects in our domain.
(:types table block - object) ; table and block are subtypes of object



Anatomy of a PDDL Domain File

Next we declare predicates, represent the state of the world.
(:predicates

(on ?x - block ?y - block) ; x is on y
(clear ?x - block) ; x is clear

)

Actions are defined with parameters, preconditions and effects.
(:action MOVE

:parameters (?x - block ?y - block) ; x, y are blocks
:precondition (and (on ?x ?y) (clear ?x)) ; x on y and x is clear
:effect (and (not (on ?x ?y)) (clear ?y) (not (clear ?x))) ; x is no
longer on y, y is now clear , x is not clear

)



Anatomy of a PDDL Domain File

Next we declare predicates, represent the state of the world.
(:predicates

(on ?x - block ?y - block) ; x is on y
(clear ?x - block) ; x is clear

)

Actions are defined with parameters, preconditions and effects.
(:action MOVE

:parameters (?x - block ?y - block) ; x, y are blocks
:precondition (and (on ?x ?y) (clear ?x)) ; x on y and x is clear
:effect (and (not (on ?x ?y)) (clear ?y) (not (clear ?x))) ; x is no
longer on y, y is now clear , x is not clear

)



Anatomy of a PDDL Domain File
Bringing it all together...
(define (domain blocks-world-domain)

(:requirements :adl)
(:types table block - object)

(:predicates
(on ?x - block ?y - block)
(clear ?x - block)

)

(:action MOVE
:parameters (?x ?y - block)
:precondition (and (on ?x ?y) (clear ?x))
:effect (and (not (on ?x ?y)) (clear ?y) (not (clear ?x)))

)
... ; other actions

)



Anatomy of a PDDL Problem File

The problem file specifies the initial state and goal state.

First we name the problem and declare the domain it uses.
(define (problem blocks-world-problem) ; Name of the problem

(:domain blocks-world) ; Domain used by the problem

We can declare objects in our problem.
(:objects

A B C - block ; A, B, C are blocks
T - table ; T is a table

)



Anatomy of a PDDL Problem File

The problem file specifies the initial state and goal state.

First we name the problem and declare the domain it uses.
(define (problem blocks-world-problem) ; Name of the problem

(:domain blocks-world) ; Domain used by the problem

We can declare objects in our problem.
(:objects

A B C - block ; A, B, C are blocks
T - table ; T is a table

)



Anatomy of a PDDL Problem File

The problem file specifies the initial state and goal state.

First we name the problem and declare the domain it uses.
(define (problem blocks-world-problem) ; Name of the problem

(:domain blocks-world) ; Domain used by the problem

We can declare objects in our problem.
(:objects

A B C - block ; A, B, C are blocks
T - table ; T is a table

)



Anatomy of a PDDL Problem File

The initial state is defined with the init predicate.
(:init

(on A B) ; A is on B
(on B T) ; B is on T
(clear C) ; C is clear

)

The goal state is defined with the goal predicate.
(:goal

(and (on A C) (on C B)) ; A is on C and C is on B
)



Anatomy of a PDDL Problem File

The initial state is defined with the init predicate.
(:init

(on A B) ; A is on B
(on B T) ; B is on T
(clear C) ; C is clear

)

The goal state is defined with the goal predicate.
(:goal

(and (on A C) (on C B)) ; A is on C and C is on B
)



Anatomy of a PDDL Problem File
Bringing it all together...
(define (problem blocks-world-problem)

(:domain blocks-world)
(:objects

A B C - block ; object declaration
T - table

)

(:init
(on A B) ; initial state
(on B T)
(clear C)

)

(:goal
(and (on A C) (on C B)) ; goal state

)
)



Testing Your Domain and Problem Files: Planner Invocation

Files can be tested using the ff planner, which is a binary executable included in the zip
file provided on Learn.
./ff -o domain_file .pddl -f problem_file .pddl

I We invoke the planner by running ./ff in the terminal.
I The domain file is specified with the -o option.
I The problem file is specified with the -f option.



Testing Your Domain and Problem Files: Planner Invocation

Files can be tested using the ff planner, which is a binary executable included in the zip
file provided on Learn.
./ff -o domain_file .pddl -f problem_file .pddl

I We invoke the planner by running ./ff in the terminal.
I The domain file is specified with the -o option.
I The problem file is specified with the -f option.



🛵 Testing Your Domain and Problem Files: Planner Output
ff: parsing domain file
domain 'blocks-world-domain' found
...done
ff: parsing problem file
problem 'blocks-world-problem' found
...done

no metric specified, plan length assumed.

checking for cyclic := effects --- OK

ff: search configuration is EHC, if that fails then best-first search on # plan search configuration
1*g(s) + 5*h(s) where metric is plan length

Counting down from goal distance: 2 into depth [1] # active state space search
1 into depth [1]
0

ff: found legal plan as follows

step 0: MOVE B TABLE C # valid plan printed if found
1: MOVE A TABLE B

time spent: 0.00 seconds instantiating 18 easy, 0 hard action templates # measures of planner performance
0.00 seconds reachability analysis, yielding 13 facts and 18 actions
0.00 seconds creating final representation with 13 relevant facts, 0 relevant fluents
0.00 seconds computing LNF
0.00 seconds building connectivity graph
0.00 seconds searching, evaluating 4 states, to a max depth of 1
0.00 seconds total time



🥤 Experiment (15 marks)

By default, the ff planner uses a fast yet incomplete heuristic called Enforced Hill
Climbing to find a plan.

If no plan is found, the planner falls back best-first search heuristic to find a plan.

f (s) = wgg(s) + whh(s)

Here,
I g(s) is the cost of the path from the initial state to the current state s.
I h(s) is the estimated cost of the path from s to the goal state.
I wg and wh are the weights of the two components of the heuristic.

In this experimental component, you will evaluate the effect of modifications to the
weights wg and wh that this heuristic uses.



🥤 Experiment (15 marks)

By default, the ff planner uses a fast yet incomplete heuristic called Enforced Hill
Climbing to find a plan.

If no plan is found, the planner falls back best-first search heuristic to find a plan.

f (s) = wgg(s) + whh(s)

Here,
I g(s) is the cost of the path from the initial state to the current state s.
I h(s) is the estimated cost of the path from s to the goal state.
I wg and wh are the weights of the two components of the heuristic.

In this experimental component, you will evaluate the effect of modifications to the
weights wg and wh that this heuristic uses.



🥤 Experiment (15 marks)

By default, the ff planner uses a fast yet incomplete heuristic called Enforced Hill
Climbing to find a plan.

If no plan is found, the planner falls back best-first search heuristic to find a plan.

f (s) = wgg(s) + whh(s)

Here,
I g(s) is the cost of the path from the initial state to the current state s.
I h(s) is the estimated cost of the path from s to the goal state.
I wg and wh are the weights of the two components of the heuristic.

In this experimental component, you will evaluate the effect of modifications to the
weights wg and wh that this heuristic uses.



🥤 Experiment (15 marks)

By default, the ff planner uses a fast yet incomplete heuristic called Enforced Hill
Climbing to find a plan.

If no plan is found, the planner falls back best-first search heuristic to find a plan.

f (s) = wgg(s) + whh(s)

Here,
I g(s) is the cost of the path from the initial state to the current state s.
I h(s) is the estimated cost of the path from s to the goal state.
I wg and wh are the weights of the two components of the heuristic.

In this experimental component, you will evaluate the effect of modifications to the
weights wg and wh that this heuristic uses.



🥤 Experiment (15 marks)

The research question that is to be answered in this component is: how does our choice
of wg and wh affect planner performance?. The tasks involved are as followed.

Design (5 marks)
🍛 Design a variation of the scenario that is harder for the planner.

Evaluation (10 marks)
🍣 Evaluate and discuss the effect of modifications to the heuristic’s weights on the

planner’s performance.

To invoke ./ff in this setting, we can use the command
./ff -E -g <w_g> -h <w_h> -o domain_file .pddl -f problem_file .pddl

where -g is the value of wg and -h is the value of wh. -E disables the EHC algorithm.



🥤 Experiment (15 marks)

The research question that is to be answered in this component is: how does our choice
of wg and wh affect planner performance?. The tasks involved are as followed.

Design (5 marks)
🍛 Design a variation of the scenario that is harder for the planner.

Evaluation (10 marks)
🍣 Evaluate and discuss the effect of modifications to the heuristic’s weights on the

planner’s performance.

To invoke ./ff in this setting, we can use the command
./ff -E -g <w_g> -h <w_h> -o domain_file .pddl -f problem_file .pddl

where -g is the value of wg and -h is the value of wh. -E disables the EHC algorithm.



🥤 Experiment (15 marks)

The research question that is to be answered in this component is: how does our choice
of wg and wh affect planner performance?. The tasks involved are as followed.

Design (5 marks)
🍛 Design a variation of the scenario that is harder for the planner.

Evaluation (10 marks)
🍣 Evaluate and discuss the effect of modifications to the heuristic’s weights on the

planner’s performance.

To invoke ./ff in this setting, we can use the command
./ff -E -g <w_g> -h <w_h> -o domain_file .pddl -f problem_file .pddl

where -g is the value of wg and -h is the value of wh. -E disables the EHC algorithm.



🥤 Experiment (15 marks)

The research question that is to be answered in this component is: how does our choice
of wg and wh affect planner performance?. The tasks involved are as followed.

Design (5 marks)
🍛 Design a variation of the scenario that is harder for the planner.

Evaluation (10 marks)
🍣 Evaluate and discuss the effect of modifications to the heuristic’s weights on the

planner’s performance.

To invoke ./ff in this setting, we can use the command
./ff -E -g <w_g> -h <w_h> -o domain_file .pddl -f problem_file .pddl

where -g is the value of wg and -h is the value of wh. -E disables the EHC algorithm.



⛽ Extensions (50 marks)

In the extensions, we modify our domain and problem files from the basic scenario to
handle real-world challenges.

Multiple Couriers (10 marks)
🛵 Model multiple couriers moving around the network and making deliveries.

Courier Capacity (5 marks)
🍕 Model a limited carrying capacity for couriers with different item weights.

Refuelling (10 marks)
⛽ Model fuel constraints and refuelling actions.

Your Extension (25 marks)
🍺 Propose and implement your own (realistic) extension to the scenario!



⛽ Extensions (50 marks)

In the extensions, we modify our domain and problem files from the basic scenario to
handle real-world challenges.

Multiple Couriers (10 marks)
🛵 Model multiple couriers moving around the network and making deliveries.

Courier Capacity (5 marks)
🍕 Model a limited carrying capacity for couriers with different item weights.

Refuelling (10 marks)
⛽ Model fuel constraints and refuelling actions.

Your Extension (25 marks)
🍺 Propose and implement your own (realistic) extension to the scenario!



⛽ Extensions (50 marks)

In the extensions, we modify our domain and problem files from the basic scenario to
handle real-world challenges.

Multiple Couriers (10 marks)
🛵 Model multiple couriers moving around the network and making deliveries.

Courier Capacity (5 marks)
🍕 Model a limited carrying capacity for couriers with different item weights.

Refuelling (10 marks)
⛽ Model fuel constraints and refuelling actions.

Your Extension (25 marks)
🍺 Propose and implement your own (realistic) extension to the scenario!



⛽ Extensions (50 marks)

In the extensions, we modify our domain and problem files from the basic scenario to
handle real-world challenges.

Multiple Couriers (10 marks)
🛵 Model multiple couriers moving around the network and making deliveries.

Courier Capacity (5 marks)
🍕 Model a limited carrying capacity for couriers with different item weights.

Refuelling (10 marks)
⛽ Model fuel constraints and refuelling actions.

Your Extension (25 marks)
🍺 Propose and implement your own (realistic) extension to the scenario!



⛽ Extensions (50 marks)

In the extensions, we modify our domain and problem files from the basic scenario to
handle real-world challenges.

Multiple Couriers (10 marks)
🛵 Model multiple couriers moving around the network and making deliveries.

Courier Capacity (5 marks)
🍕 Model a limited carrying capacity for couriers with different item weights.

Refuelling (10 marks)
⛽ Model fuel constraints and refuelling actions.

Your Extension (25 marks)
🍺 Propose and implement your own (realistic) extension to the scenario!



⛽ Extensions: Multiple Couriers (10 marks)

In this first extension, we will modify our domain and problem files to allow multiple
couriers to move around the network and make deliveries.

This requires the use of existential quantification in the domain file, which allows us to
specify in an action’s preconditions that a predicate is true for at least one object of a
given type.

We must first ensure that we import existential preconditions.
(:requirements :adl :existential-preconditions)



⛽ Extensions: Multiple Couriers (10 marks)

In this first extension, we will modify our domain and problem files to allow multiple
couriers to move around the network and make deliveries.

This requires the use of existential quantification in the domain file, which allows us to
specify in an action’s preconditions that a predicate is true for at least one object of a
given type.

We must first ensure that we import existential preconditions.
(:requirements :adl :existential-preconditions)



⛽ Extensions: Multiple Couriers (10 marks)

In this first extension, we will modify our domain and problem files to allow multiple
couriers to move around the network and make deliveries.

This requires the use of existential quantification in the domain file, which allows us to
specify in an action’s preconditions that a predicate is true for at least one object of a
given type.

We must first ensure that we import existential preconditions.
(:requirements :adl :existential-preconditions)



⛽ Extensions: Multiple Couriers)

Existential preconditions are invoked using the following signature.
(exists (?x - type ?y - type ...)

(condition)
)

In the classic block world example, we could use existential quantifiers to express that
there is a block on a table.
(exists (?b - block ?t - table)

(and
(on ?b ?loc)
(clear ?b)

)
)



⛽ Extensions: Multiple Couriers)

Existential preconditions are invoked using the following signature.
(exists (?x - type ?y - type ...)

(condition)
)

In the classic block world example, we could use existential quantifiers to express that
there is a block on a table.
(exists (?b - block ?t - table)

(and
(on ?b ?loc)
(clear ?b)

)
)



⛽ Extensions: Bag Capacity and Refuelling

In extensions 2 and 3, the use of numeric fluents, which allow objects to hold values
during a plan.1Again, we start by importing fluents.
(:requirements :adl :fluents)

Fluents are declared as functions at the top of the domain file.
(:functions

(<variable_name > <parameter_name > - <object_type >)
)

Further information is available at
https://planning.wiki/ref/pddl21/domain#numeric-fluents (link also provided in
handout)

https://planning.wiki/ref/pddl21/domain#numeric-fluents


⛽ Extensions: Bag Capacity and Refuelling

In extensions 2 and 3, the use of numeric fluents, which allow objects to hold values
during a plan.1Again, we start by importing fluents.
(:requirements :adl :fluents)

Fluents are declared as functions at the top of the domain file.
(:functions

(<variable_name > <parameter_name > - <object_type >)
)

Further information is available at
https://planning.wiki/ref/pddl21/domain#numeric-fluents (link also provided in
handout)

https://planning.wiki/ref/pddl21/domain#numeric-fluents


⛽ Extensions: Bag Capacity and Refuelling

Fluents can be used in both the preconditions and effects of actions, and their values
can be modified in different ways depending on the operator. For +, -, /, *:
(+ <variable_name_x > <variable_name_y >) ; addition used for example

purposes

Operators such as increase, decrease, and assign can modify the value of a variable:
(increase (<variable_name > <object_type >) <value >) ; increase `

variable_name ' by `value '

It is possible to use another numeric variable in place of value.
(decrease

(<variable_name_x > <parameter_name_x >)
(<variable_name_y > - <parameter_name_y >) ;



⛽ Extensions: Bag Capacity and Refuelling

Fluents can be used in both the preconditions and effects of actions, and their values
can be modified in different ways depending on the operator. For +, -, /, *:
(+ <variable_name_x > <variable_name_y >) ; addition used for example

purposes

Operators such as increase, decrease, and assign can modify the value of a variable:
(increase (<variable_name > <object_type >) <value >) ; increase `

variable_name ' by `value '

It is possible to use another numeric variable in place of value.
(decrease

(<variable_name_x > <parameter_name_x >)
(<variable_name_y > - <parameter_name_y >) ;



⛽ Extensions: Bag Capacity and Refuelling

Fluents can be used in both the preconditions and effects of actions, and their values
can be modified in different ways depending on the operator. For +, -, /, *:
(+ <variable_name_x > <variable_name_y >) ; addition used for example

purposes

Operators such as increase, decrease, and assign can modify the value of a variable:
(increase (<variable_name > <object_type >) <value >) ; increase `

variable_name ' by `value '

It is possible to use another numeric variable in place of value.
(decrease

(<variable_name_x > <parameter_name_x >)
(<variable_name_y > - <parameter_name_y >) ;



🔬 Extensions: Your Extension

Finally, for an extra challenge, the last extension enables you to motivate, design, and
implement an additional realistic modification to the scenario.

Note!
I Please do not attempt this extension unless the previous tasks were a breeze.
I We will be much pickier when marking this part; and expect extensions and reports

that go well beyond our expectations to warrant a meaningful mark
I We’d like to encourage you to prioritise other important tasks (e.g. refining answers

to previous parts, other coursework, even catching up on sleep) before spending
time on this subtask, in the interest of efficiency!



🔬 Extensions: Your Extension

Finally, for an extra challenge, the last extension enables you to motivate, design, and
implement an additional realistic modification to the scenario.

Note!
I Please do not attempt this extension unless the previous tasks were a breeze.
I We will be much pickier when marking this part; and expect extensions and reports

that go well beyond our expectations to warrant a meaningful mark
I We’d like to encourage you to prioritise other important tasks (e.g. refining answers

to previous parts, other coursework, even catching up on sleep) before spending
time on this subtask, in the interest of efficiency!



Submission

Submission is via Gradescope.
I Please include all domain and problem files, and your report (as a pdf).
I An autograder will run your PDDL files to ensure valid outputs are generated.
I Deadline: 12:00 on 27th March 2025.

Please feel free to ask questions on Piazza.

Good luck, and have fun!



Submission

Submission is via Gradescope.
I Please include all domain and problem files, and your report (as a pdf).
I An autograder will run your PDDL files to ensure valid outputs are generated.
I Deadline: 12:00 on 27th March 2025.

Please feel free to ask questions on Piazza.

Good luck, and have fun!



Submission

Submission is via Gradescope.
I Please include all domain and problem files, and your report (as a pdf).
I An autograder will run your PDDL files to ensure valid outputs are generated.
I Deadline: 12:00 on 27th March 2025.

Please feel free to ask questions on Piazza.

Good luck, and have fun!


