Lecture 30: Markov Decision Processes



Correction: Constraints on Rational Preferences

e Orderability:(A > B) V (B >~ A) V (A~ B)

e Transitivity: (A> B)A(B> C) = (A> ()

e Continuity: A> B> C = 3Jp[p,A;1—p,C]~ B

e Substitutability: A~ B — [p,A;1—p,C]~[p,B;1—p,C]

e Monotonicity: A>B = (p>q < [p,A;1—p,B] = [q,A;1—q,B])

e Decomposability:
[p.Ai1—p,[g,B:1—q,Cl] ~[p, A (1 —p)g, B;(1—p)(1—q)C]



Correction: Constraints on Rational Preferences

e Orderability:(A > B) V (B >~ A) V (A~ B)



Correction: Constraints on Rational Preferences

Orderability: (A> B)V (B > A)V (A~ B)

Isn’t this too weak? This doesn't stop us from having A = B and B = A



Correction: Constraints on Rational Preferences

Orderability: Exactly one of (A > B),(B > A), or (A ~ B) must hold

Isn’t this too weak? This doesn't stop us from having A > B and B - A



Last Lecture

Decision Making under Uncertainty for single-step problems



A Sequential Decision Problem
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A Sequential Decision Problem

3 0.8
So — initial state
0.1 0.1
2 =1 P(s'|s,a) = T(s,a,s’) — transition model
R(s) — reward function
1 START
1 2 3 4



A Sequential Decision Problem

3 0.8
So — initial state
0.1 0.1
2 =1 P(s'|s,a) = T(s,a,s’) — transition model
R(s) — reward function
1 START
1 2 3 4

Un(so,51,52,--.)



Markov Decision Process

MDP = <507 T(Sv a, sl)v R(5)>

m(s) — policy
m*(s) — optimal policy (the one that yields highest expected utility)



Reward function affects optimal policy

R(s) = —0.04



Reward function affects optimal policy
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R(s) = —0.01



Reward function affects optimal policy

R(s) = —1.15



Reward function affects optimal policy
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R(s) = 2.0
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Finite vs Infinite Utilities

Infinite Horizon Utility Function:

Uh([Sl7 524.. ])

Finite Horizon Utility Function:

Vk, Up([s1,%2,---SN,---sSn+k]) = Un([s1, 52, ...sn]) for fixed N
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Additive Reward and Infinite Horizons

U/,([So,sl,SQ7 .. ]) = R(Sl) -+ R(S2) + ...
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Discounted Reward Formulation

Uh([SO, Silg Sy o o ]) = R(So) + ’)/R(Sl) + ’)/ZR(SQ) + ’73R(S3) + ...
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Discounted Reward Formulation

Uh([SO, Silg Sy o o ]) = R(So) + ’)/R(Sl) + ’)/ZR(Sz) + ’73R(S3) + ...

=Y 7'R(st)
P
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Discounted Reward Formulation

Uh([SO, Silg Sy o o ]) = R(So) + ’)/R(Sl) + ’)/ZR(Sz) + ’73R(S3) + ...
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P
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Discounted Reward Formulation

Uh([SO, Silg Sy o o ]) = R(So) + ’)/R(Sl) + ’)/ZR(Sz) + ’73R(S3) + ...

=Y 7'R(st)
P

o
< Z ’YtRmax
t=0

Rmax

1—7
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How good is a given state?

UT(s) = E [Z Y'R(S:)
t=0
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How good is a given state?

UT(s) = E [Z Y'R(S:)
t=0

7, = argmax U™ (s)
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v =1,R(s) = 0.04

- - 0.8516 | 0.9078 | 0.9578

4

‘ El 0.8016 0.7003

-+ J -+ 0.7453 | 0.6953 | 0.6514 | 0.4279

(a) 7(s) (b) U™(s)




Finding the Optimal Policy: The Bellman Equation

7*(s) = argmax U™ (s)
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Finding the Optimal Policy: The Bellman Equation

7*(s) = argmax U™ (s)

m*(s) = argmax Z P(s'|s,a)U™ " (s)
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Finding the Optimal Policy: The Bellman Equation

7*(s) = argmax U™ (s)

m*(s) = argmax Z P(s'|s,a)U™ " (s)

Bellman Equation: U™ (s) = R(s) + v maxz P(s'|s, a) U™ (s')
a

s/
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Bellman Equations

Bellman Equation: U™ (s) = R(s) + v maxz P(s'|s,a)U™ " (s)
a

s/

Q: Problem with n states, how many bellman equations?
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Bellman Equations

ur (s1,ny) = R(5<1,1>) +v mszl P(Sl\5<1,1>a 3)U7T* (s

s
U (s(1,2y) = R(s1,2)) + maaxz P(s'ls(1,2 a)U™ (s) . 00

’ a‘@»m
2
1 | smar

U (5<1,3>) = R(5<1,3>) +7 mfxz P(5/\5<1,3>7 3)UW* (s)
s/

B

ut” (5<1’4>) = R(s<114>) + v m;xZ: P(5/‘5<1'4>7 a)Uﬂ'* (51)
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Bellman Equations

ur (5<1,1>) = R(5<1,1>) +7 m;axz P(5/|5<1,1>7 a)UW* (s)
——— o —_—— SN

reward transition recursive

ur (s(1,2)) = R(s5¢1,2)) + msz P(s'|s(1,2y, a)u™ (s') : @
s/

U™ (s1,3) = R(sq5)) + ymaxd_ P(s'Isq1 3y, ) U™ (s')
5/

U™ (sa)) = R(s,a)) +vmax Y P(s'Is(1,4), 2) U™ ()

S
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Value lteration

Setup: Set Utility guesses to arbitrary values

Uo(s(1,1y) < 0, Uo(s(1,2y) < O, ...

Repeat: One-step update Utilities using bellman equation

Uita(s,1y) « Risy) + maaxz P(s'[s1,1y,a)Ui(s")

s/

Uisi(s(3,a)) < R(s(zay) + 7 max > P(s'[s(3.4y, ) Ui(s')

S

Until: U;11(s) = U;(s) for all s
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Example Update

Uit1(s(1,1y) + —0.04 + v max|
0.8Ui(s(1,2)) +0.1Ui(s(2,1y) + 0.1Ui(s(1,1y),
0.9Ui(s(1,1)y) +0.1Ui(s(1,2y),
0.9U;(s1.1y) + 0-1Ui(s2.1));
(

y)
0.8Ui(s(2,1y) +0.1Ui(s(1,2y) + 0.1Ui(5¢1,1)

(up)
(left)
(down)

(right)

3 (Ex0) 0.8
0.1 0.1
’ @
1| smanr
1 2 3 4
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Value lteration in Action

08516 | 0.9078 | 0.9578
0.8016 07003 | [=1]
0.7453 | 06953 | 0.6514 | 0.4279

Utility estimates

08|/
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Number of iterations
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e Sequential decision making
e Markov Decision Processes

e Value lteration
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Returning a the Map of the Landscape

Scraped from Lecture 1: (Kwabena Nuamah)

e “Benign”: Fully Observable, Deterministic, Episodic, Static,
Discrete and Single Agent

e “Chaotic”: Partially Observable, Stochastic, Sequential,
Dynamic, Continuous, Multi-agent
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Continuous, Stochastic, Partially Observable, Sequential, ...

Courses

e Introduction to Mobile Robotics
(MOB)

e Advanced Robotics

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX
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Graphical Models

PROBABILISTIC GRAPHICAL MODELS Courses:

e Probabilistic Modelling and
Reasoning (PMR)

e Methods for Causal Inference (MCI)

DAPHNE KOLLER AND NIR FRIEDMAN
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| liked Constraint Solving / Coursework 1!

) Google OR-Tools ORTools  ORAPI
OR-Tools
Installation Guides Reference Examples.
= Fiter
Home > Products > ORTools > Guides Was this helpful? 7 GBI
Getstarted ~ About OR-Tools Send feedback
About 0R-Tools
» Get Started Guides o-
Mathopt € v
OR-Tools is open source software for combinatorial optimization, which seeks to find the best solution to a problem out of a very large set of
cosar . possible solutions. Here are some examples of problems that OR-Tools solves:
« Vehicle routing: Find optimal routes for vehicle fleets that pick up and deliver packages given constraints (e.g., ‘this truck can't hold
Network Flows v more than 20,000 pounds® or *all deliveries must be made within a two-hour window").
Linear Optimization v « Scheduling: Find the optimal schedule for a complex set of tasks, some of which need to be performed before others, on a fixed set of
machines, or other resources.
Integer Optimization v « Bin packing: Pack as many objects of various sizes as possible into a fixed number of bins with maximum capacities.
Assignment v In most cases, problems like these have a vast number of possible solutions—too many for a computer to search them all. To overcome
this, OR-Tools uses state-of-the-art algorithms to narrow down the search set, in order to find an optimal (or close to optimal) solution.
Packing v
OR-Tools includes solvers for
Routing v Constraint Programming
Scheduling v Aset of techniques for finding feasible solutions to a problem expressed as constraints (€.g., a room can't be used for two events
simultaneously, or the distance to the crops must be less than the length of the hose, or no more than five TV shows can be recorded
atonce)
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| liked PDDL / Coursework 2!

1NQ  International Confer nd Scheduling oo
g

Competitions

The International Planning Competition 2023

« Classical Tracks
Daniel FiSer, Saarland University
Florian Pommerening, University of Basel
o Learning Tracks
Jendrik Seipp, Linkbping University
Javier Segovia-Aguas, Universitat Pompeu Fabra
o Probabilistic Tracks
Avyal Taitler, University of Toronto
Scott Sanner, University of Toronto
 Numeric Tracks
Joan Espasa Arxer, University of St Andrews
Enrico Scala, University of Brescia
o HTN Tracks
Ron Alford, MITRE
Dominik Schreiber, Karlsruhe Institute of Technology

Gregor Behnke, University of Amsterdam




Wait! What was all that stuff about MDPs?

“/ “"‘ﬁ
Courses /
/
e Reinforcement Learning Reinforcement
(RL) Learning
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Where did these parameters come from?

P(B)

0.001

Burglary

Earthquake

P(E)

0.002

Courses
e Machine Learning (MLG)

e Introductory Applied Machine
Learning (IAML)

e Machine Learning Practical (MLP)
e Machine Learning Systems (MLS)
e Machine Learning Theory (MLT)

e Machine Learning and Pattern
Recognition (MLPR)
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I can make an Al agent...but should 1?7

Ashort guide to technology ethics

Stephanie Hare
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