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Problem-
solving 
agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
   persistent:   seq, an action sequence, initially empty
        state, some description of the current world state
        goal, a goal, initially null
        problem, a problem formulation
  state  UPDATE-STATE(state, percept)
  if seq is empty then do
     goal  FORMULATE-GOAL(state)
     problem  FORMULATE-PROBLEM(state, goal)
     seq  SEARCH(problem)
     if seq = failure then return a null action
  action  FIRST(seq)
  seq  REST(seq)
  return action
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Example: 
Romania

On holiday in Romania.

Currently in Arad.

Flight leaves tomorrow from 
Bucharest.
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Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal:
◦ be in Bucharest

Formulate problem:
◦ states: various cities
◦ actions: drive between cities

Find solution:
◦ sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Problem types

Deterministic, fully observable → single-state problem
◦ Agent knows exactly which state it will be in; solution is a sequence

Non-observable → sensorless problem (conformant problem)
◦ Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable → contingency problem
◦ percepts provide new information about current state

◦ often interleave search, execution

Unknown state space → exploration problem
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Example: 
vacuum world

Single-state:

Start in 5 

Solution? 
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Example: 
vacuum world

Single-state:
Start in 5
Solution? 
[Right, Suck]

Sensorless:
Start in {1,2,3,4,5,6,7,8} 
e.g. Right goes to {2,4,6,8} 
Solution? 
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Example: 
vacuum world

Single-state:
Start in 5
Solution? 
[Right, Suck]

Sensorless:
Start in {1,2,3,4,5,6,7,8} 
e.g. Right goes to {2,4,6,8} 
Solution? 
[Right, Suck, Left, Suck]
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Example: 
vacuum world

Contingency:

◦ Nondeterministic: Suck may 

dirty a clean carpet

◦ Partially observable: can 

only see dirt at current 

location.

◦ Percept: [Left, Clean]

i.e., start in 5 or 7

Solution?
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Example: 
vacuum world

Contingency:

◦ Nondeterministic: Suck may 
dirty a clean carpet

◦ Partially observable: can 
only see dirt at current 
location.

◦ Percept: [Left, Clean]
i.e., start in 5 or 7
Solution?
[Right, if dirt then Suck]
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Problem Formulation
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Single-state problem formulation

Initial State

• e.g. “in Arad”

Actions or Successor function

• S(x) = set of action–state pairs 

• e.g. S(Arad) = {<Arad → Zerind, Zerind>, … }

Goal test

• explicit e.g. x = “in Bucharest"

• implicit e.g. Checkmate(x)

Path cost (additive)

• e.g. sum of distances, number of actions executed, etc.

• c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be ≥ 0
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Single-state problem formulation

Initial State

• e.g. “in Arad”

Actions or Successor function

• S(x) = set of action–state pairs 

• e.g. S(Arad) = {<Arad → Zerind, Zerind>, … }

Goal test

• explicit e.g. x = “in Bucharest"

• implicit e.g. Checkmate(x)

Path cost (additive)

• e.g. sum of distances, number of actions executed, etc.

• c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal 
state, i.e. a state that succeeds the goal test.

INF2D: REASONING AND AGENTS 14



Selecting a state space

Real world is absurdly complex 

→ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

◦ e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, 
etc. 

◦ For guaranteed realizability, any real state "in Arad“ must get to some real state "in 
Zerind"

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem.
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Example: Vacuum world
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States

Actions

Goal test

Path cost (additive)



Example: Vacuum world
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States

• Pair of dirt and robot locations

Actions

• Left, Right, Suck

Goal test

• No dirt at any location

Path cost (additive)

• 1 per action



Example: 
Vacuum world
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• Pair of dirt and robot locations

States

• Left, Right, Suck

Actions

• No dirt at any location

Goal test

• 1 per action

Path cost (additive)



Example: 8-puzzle
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States

Actions

Goal test

Path cost (additive)



Example: 8-puzzle
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States

• Integer location of tiles

Actions

• Move blank left, right, up, down

Goal test

• = Goal state (given)

Path cost (additive)

• 1 per move



Example: 8-puzzle
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States

• Integer location of tiles

Actions

• Move blank left, right, up, down

Goal test

• = Goal state (given)

Path cost (additive)

• 1 per move

NP-
Hard



Example: Robotic assembly
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States

• Real-valued coordinates of robot joint angles

• Parts of the object to be assembled

Actions

• Continuous motions of robot joints

Goal test

• = complete assembly

Path cost (additive)

• Time to execute



Searching for 
Solutions
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Tree search algorithms

function TREE-SEARCH(problem) returns a solution, or failure

  initialize the frontier using the initial state of problem

  loop do

   if the frontier is empty then return failure

   choose a leaf node and remove it from the frontier

   if the node contains a goal state then return the corresponding solution

   expand the chosen node, adding the resulting nodes to the frontier
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Tree search example

INF2D: REASONING AND AGENTS 25



Tree search example
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Tree search example
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Implementation: 
states vs. nodes

A state is a (representation of) a physical 

configuration

A node is a book-keeping data structure 

constituting part of a search tree; includes 

state, parent node, action, path cost

Using these it is easy to compute the 

components for a child node. 

(The CHILD-NODE function)
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Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 loop do
  if the frontier is empty then return failure
  choose a leaf node and remove it from the frontier
  if the node contains a goal state then return the corresponding solution
  expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node
 return a node with
  STATE = problem.RESULT(parent.STATE, action),
  PARENT = parent, ACTION = action,
  PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)
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Summary

Problem formulation usually requires abstracting away real-world 

details to define a state space that can feasibly be explored.
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Why?

◦ Formulating problems in a way that a computer can understand.

◦ Breaking down the problem and its parameters.

◦ Clarifying the possible actions and assumptions about them.

◦ Creating structures where we can methodically and systematically search for solutions.
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