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Problem-solving
Agents




function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seqg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null

PI’O b ‘ em- problem, a problem formulation

state € UPDATE-STATE(state, percept)
X if seq is empty then do
S O ‘ VIiN g goal € FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
a g e ﬂtS seq € SEARCH(problem)
if seq = failure then return a null action
action € FIRST(seq)

seq € REST(seq)
return action
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—xample:
Romania

On holiday in Romania.
Currently in Arad.

Flight leaves tomorrow from
Bucharest.




—xample: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
o be in Bucharest

Formulate problem:
o states: various cities
o gactions: drive between cities

Find solution:
o sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Problem types

Deterministic, fully observable = single-state problem
o Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant problem)
o Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable = contingency problem

o percepts provide new information about current state
o often interleave search, execution

Unknown state space = exploration problem
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—xample:
vacuum world

Single-state:
Startin 5
Solution?

[Right, Suck]

Sensorless:
Startin{71,2,3,4,5,6,7,8}
e.g. Right goes to {2,4,6,8}
Solution?




—xample:
vacuum world

Single-state:
Startin 5
Solution?

[Right, Suck]

Sensorless:
Startin{71,2,3,4,5,6,7,8}
e.g. Right goes to {2,4,6,8}
Solution?

[Right, Suck, Left, Suck]
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—xample:
vacuum world

Contingency:

o Nondeterministic: Suck may
dirty a clean carpet

o Partially observable: can
only see dirt at current
location.

o Percept: [Left, Clean]
l.e., startin 5or 7/
Solution?

e
gl
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—xample:
vacuum world

Contingency:

> Nondeterministic: Suck may
dirty a clean carpet

o Partially observable: can
only see dirt at current
location.

o Percept: [Left, Clean]
l.e., startin 5or 7/

Solution?
[Right, if dirt then Suck]

e
gl

INF2D: REASONING AND AGENTS 1




Problem Formulation




Single-state problem formulation
m Initial State
® e.g."in Arad”
» Actions or Successor function
= set of action-state pairs
°e. g S Arad) = {<Arad > Zerind, Zerind>, .
(‘ Goal test
O ® explicit e.g.x = "in Bucharest"
e implicit e.g. Checkmate(x)
Path cost (additive)
% ® e.g.sum of distances, number of actions executed, etc.
® c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be = 0
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Single-state problem formulation

1

Initial State

® e.g."in Arad”

A solution is a sequence of actions leading from the initial state to a goal
state, i.e. a state that succeeds the goal test.

A
O ® explicit e.g.x = "in Bucharest"

e implicit e.g. Checkmate(x)

Path cost (additive)
® e.g.sum of distances, number of actions executed, etc.

® c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be = 0
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Selecting a state space

Real world is absurdly complex

- state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

o e.g., "Arad = Zerind" represents a complex set of possible routes, detours, rest stops,
etc.

o For guaranteed realizability, any real state "in Arad” must get to some real state "in
Zerind"

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem.
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—xample: Vacuum worlo

N

¢ Pair of dirt and robot locations

-~ T

e [ eft, Right, Suck

¢

* No dirt at any location

SIS N
-
S SER SIS

% Path cost (additive)

® | per action
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—xample:
R Vacuum world

= States

v
-
w

R e Pair of dirt and robot locations
088 SR oSR 08R .
mm Actions
S

S S e [ eft, Right, Suck

R
LC 2 :)R mw Goal test
U " Q * No dirt at any location

m Path cost (additive)

C

* 1 per action
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—xample: 8-puzzle
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—xample: 8-puzzle

N

* Integer location of tiles

»

® Move blank left, right, up, down

8 ] 3 |f 1 6 || 7 || 8 ( ) Goal test

Start State Goal State e = Goal state (given)

% Path cost (additive)

* 1 per move

5 6 3 4 5
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—xample: 8-puzzle

N

* Integer location of tiles

»

® Move blank left, right, up, down

8 ] 3 |f 1 6 || 7 || 8 ( ) Goal test

Start State Goal State e = Goal state (given)

% Path cost (additive)

* 1 per move

5 6 3 4 5
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—xample: Robotic assembly

mm

P ® Real-valued coordinates of robot joint angles
* Parts of the object to be assembled

o e Continuous motions of robot joints
(@) Goal test

® = complete assembly

% Path cost (additive)

* Time to execute
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Searching for
Solutions




Tree search algorithms

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose aleaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier
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Tree search example
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Tree search example
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Rimnicu
Vilcea

Tree search example
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Implementation:
states vs. nodes

PARENT A state is a (representation of) a physical

configuration

s M 4 Node ACTION = Right
PATH-COST = 6 A node is a book-keeping data structure
constituting part of a search tree; includes

state, parent node, action, path cost

STATE

Using these it is easy to compute the
components for a child node.
(The CrrLD-NoODE function)
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Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node
return a node with
STATE = problem .RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)
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Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored.
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Why?

Formulating problems in a way that a computer can understand.

(¢]

(e]

Breaking down the problem and its parameters.

(¢]

Clarifying the possible actions and assumptions about them.

o

Creating structures where we can methodically and systematically search for solutions.
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