
Problem
Solving and
Search

INF2D: REASONING AND AGENTS

In formatics 2D: Reasoning and Agents

Lecture 2

Problem-solving
Agents

INF2D: REASONING AND AGENTS 2

Problem-
solving
agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
 persistent: seq, an action sequence, initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation
 state  UPDATE-STATE(state, percept)
 if seq is empty then do
 goal  FORMULATE-GOAL(state)
 problem  FORMULATE-PROBLEM(state, goal)
 seq  SEARCH(problem)
 if seq = failure then return a null action
 action  FIRST(seq)
 seq  REST(seq)
 return action

INF2D: REASONING AND AGENTS 3

Example:
Romania

On holiday in Romania.

Currently in Arad.

Flight leaves tomorrow from
Bucharest.

INF2D: REASONING AND AGENTS 4

Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal:
◦ be in Bucharest

Formulate problem:
◦ states: various cities
◦ actions: drive between cities

Find solution:
◦ sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

INF2D: REASONING AND AGENTS 5

Problem types

Deterministic, fully observable → single-state problem
◦ Agent knows exactly which state it will be in; solution is a sequence

Non-observable → sensorless problem (conformant problem)
◦ Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable → contingency problem
◦ percepts provide new information about current state

◦ often interleave search, execution

Unknown state space → exploration problem

INF2D: REASONING AND AGENTS 6

Example:
vacuum world

Single-state:

Start in 5

Solution?

INF2D: REASONING AND AGENTS 7

Example:
vacuum world

Single-state:
Start in 5
Solution?
[Right, Suck]

Sensorless:
Start in {1,2,3,4,5,6,7,8}
e.g. Right goes to {2,4,6,8}
Solution?

INF2D: REASONING AND AGENTS 8

Example:
vacuum world

Single-state:
Start in 5
Solution?
[Right, Suck]

Sensorless:
Start in {1,2,3,4,5,6,7,8}
e.g. Right goes to {2,4,6,8}
Solution?
[Right, Suck, Left, Suck]

INF2D: REASONING AND AGENTS 9

Example:
vacuum world

Contingency:

◦ Nondeterministic: Suck may

dirty a clean carpet

◦ Partially observable: can

only see dirt at current

location.

◦ Percept: [Left, Clean]

i.e., start in 5 or 7

Solution?

INF2D: REASONING AND AGENTS 10

Example:
vacuum world

Contingency:

◦ Nondeterministic: Suck may
dirty a clean carpet

◦ Partially observable: can
only see dirt at current
location.

◦ Percept: [Left, Clean]
i.e., start in 5 or 7
Solution?
[Right, if dirt then Suck]

INF2D: REASONING AND AGENTS 11

Problem Formulation

INF2D: REASONING AND AGENTS 12

Single-state problem formulation

Initial State

• e.g. “in Arad”

Actions or Successor function

• S(x) = set of action–state pairs

• e.g. S(Arad) = {<Arad → Zerind, Zerind>, … }

Goal test

• explicit e.g. x = “in Bucharest"

• implicit e.g. Checkmate(x)

Path cost (additive)

• e.g. sum of distances, number of actions executed, etc.

• c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be ≥ 0

INF2D: REASONING AND AGENTS 13

Single-state problem formulation

Initial State

• e.g. “in Arad”

Actions or Successor function

• S(x) = set of action–state pairs

• e.g. S(Arad) = {<Arad → Zerind, Zerind>, … }

Goal test

• explicit e.g. x = “in Bucharest"

• implicit e.g. Checkmate(x)

Path cost (additive)

• e.g. sum of distances, number of actions executed, etc.

• c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal
state, i.e. a state that succeeds the goal test.

INF2D: REASONING AND AGENTS 14

Selecting a state space

Real world is absurdly complex

→ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

◦ e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops,
etc.

◦ For guaranteed realizability, any real state "in Arad“ must get to some real state "in
Zerind"

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem.

INF2D: REASONING AND AGENTS 15

Example: Vacuum world

INF2D: REASONING AND AGENTS 16

States

Actions

Goal test

Path cost (additive)

Example: Vacuum world

INF2D: REASONING AND AGENTS 17

States

• Pair of dirt and robot locations

Actions

• Left, Right, Suck

Goal test

• No dirt at any location

Path cost (additive)

• 1 per action

Example:
Vacuum world

INF2D: REASONING AND AGENTS 18

• Pair of dirt and robot locations

States

• Left, Right, Suck

Actions

• No dirt at any location

Goal test

• 1 per action

Path cost (additive)

Example: 8-puzzle

INF2D: REASONING AND AGENTS 19

States

Actions

Goal test

Path cost (additive)

Example: 8-puzzle

INF2D: REASONING AND AGENTS 20

States

• Integer location of tiles

Actions

• Move blank left, right, up, down

Goal test

• = Goal state (given)

Path cost (additive)

• 1 per move

Example: 8-puzzle

INF2D: REASONING AND AGENTS 21

States

• Integer location of tiles

Actions

• Move blank left, right, up, down

Goal test

• = Goal state (given)

Path cost (additive)

• 1 per move

NP-
Hard

Example: Robotic assembly

INF2D: REASONING AND AGENTS 22

States

• Real-valued coordinates of robot joint angles

• Parts of the object to be assembled

Actions

• Continuous motions of robot joints

Goal test

• = complete assembly

Path cost (additive)

• Time to execute

Searching for
Solutions

INF2D: REASONING AND AGENTS 23

Tree search algorithms

function TREE-SEARCH(problem) returns a solution, or failure

 initialize the frontier using the initial state of problem

 loop do

 if the frontier is empty then return failure

 choose a leaf node and remove it from the frontier

 if the node contains a goal state then return the corresponding solution

 expand the chosen node, adding the resulting nodes to the frontier

INF2D: REASONING AND AGENTS 24

Tree search example

INF2D: REASONING AND AGENTS 25

Tree search example

INF2D: REASONING AND AGENTS 26

Tree search example

INF2D: REASONING AND AGENTS 27

Implementation:
states vs. nodes

A state is a (representation of) a physical

configuration

A node is a book-keeping data structure

constituting part of a search tree; includes

state, parent node, action, path cost

Using these it is easy to compute the

components for a child node.

(The CHILD-NODE function)

INF2D: REASONING AND AGENTS 28

Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node
 return a node with
 STATE = problem.RESULT(parent.STATE, action),
 PARENT = parent, ACTION = action,
 PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)

INF2D: REASONING AND AGENTS 29

Summary

Problem formulation usually requires abstracting away real-world

details to define a state space that can feasibly be explored.

INF2D: REASONING AND AGENTS 30

Why?

◦ Formulating problems in a way that a computer can understand.

◦ Breaking down the problem and its parameters.

◦ Clarifying the possible actions and assumptions about them.

◦ Creating structures where we can methodically and systematically search for solutions.

INF2D: REASONING AND AGENTS 31

	Default Section
	Slide 1: Problem Solving and Search

	Problem-solving Agents
	Slide 2: Problem-solving Agents
	Slide 3: Problem-solving agents
	Slide 4: Example: Romania
	Slide 5: Example: Romania
	Slide 6: Problem types
	Slide 7: Example: vacuum world
	Slide 8: Example: vacuum world
	Slide 9: Example: vacuum world
	Slide 10: Example: vacuum world
	Slide 11: Example: vacuum world

	Problem Formulation
	Slide 12: Problem Formulation
	Slide 13: Single-state problem formulation
	Slide 14: Single-state problem formulation
	Slide 15: Selecting a state space
	Slide 16: Example: Vacuum world
	Slide 17: Example: Vacuum world
	Slide 18: Example: Vacuum world
	Slide 19: Example: 8-puzzle
	Slide 20: Example: 8-puzzle
	Slide 21: Example: 8-puzzle
	Slide 22: Example: Robotic assembly

	Search
	Slide 23: Searching for Solutions
	Slide 24: Tree search algorithms
	Slide 25: Tree search example
	Slide 26: Tree search example
	Slide 27: Tree search example
	Slide 28: Implementation: states vs. nodes
	Slide 29: Implementation: general tree search
	Slide 30: Summary
	Slide 31: Why?

