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Review: Summary of algorithms
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Review: Tree search

function TREE-SEARCH(problem) returns a solution, or failure

  initialize the frontier using the initial state of problem

  loop do

   if the frontier is empty then return failure

   choose a leaf node and remove it from the frontier

   if the node contains a goal state then return the corresponding solution

   expand the chosen node, adding the resulting nodes to the frontier
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A search strategy is defined by picking the order of node expansion from 

the frontier.



Review: Graph search

INF2D: REASONING AND AGENTS 4

A search strategy is defined by picking the order of node expansion from 

the frontier.



Making search 'informed'

• Tree-Search

• Graph Search
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A search strategy is defined by picking the order of node expansion from 

the frontier.

What if we order the 
nodes in the frontier 

by decreasing 
desirability?



Best-first search

An instance of general TREE-SEARCH or GRAPH-SEARCH

→ Use an evaluation function f(n) for each node n
◦ estimate of "desirability"

→ Expand most desirable unexpanded node, usually the node with the 

lowest evaluation
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Heuristics

• Any method that is believed or practically proven to be useful for the 

solution of a given problem.

◦ No guarantee that it will always work or lead to an optimal solution!

• We use heuristics to guide search.

◦ This may not change the worst-case complexity of the algorithm, 

but can help in the average case.

• We will introduce admissibility, consistency conditions to identify good 

heuristics.
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Romania Example
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Greedy best-first 
search
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Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

◦ estimated cost of cheapest path from state at node n to a goal state

◦ e.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that appears to be closest 

to goal.
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Greedy 
best-first search
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Arad
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Properties of best-first search

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?

Space complexity?

Optimal?
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Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?

Space complexity?

Optimal?
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GRAPH-SEARCH 
is complete in 
finite spaces.



Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?

Optimal?
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Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?

Optimal?
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A good heuristic 
can lead to 

dramatic 
improvement!



Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?
O(bm) – keeps all nodes in memory

Optimal?
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Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?
O(bm) – keeps all nodes in memory

Optimal?
No
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A* Search
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A* search

• Evaluation function f(n) = g(n) + h(n)

◦ g(n) = cost so far to reach n

◦ h(n) = estimated cost from n to goal

◦ f(n) = estimated total cost of path through n to goal

• Avoid expanding paths that are already expensive
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A* search
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A* search
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A* search
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A* search
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A* search
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A* search
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Heuristics
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Admissible heuristics

• A heuristic h(n) is admissible if for every node n:

h(n) ≤ h*(n) 

where h*(n) is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the 

goal, i.e., it is optimistic

Example: hSLD(n) (never overestimates the actual road distance)
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Admissible heuristic = optimal A*

h(n) never overestimates the cost to reach the goal

Thus, f(n) = g(n) + h(n) never overestimates the true cost of a 

solution

THEOREM

  If h(n) is admissible, A* using TREE-SEARCH is optimal
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Proof: Optimality of A*

Suppose some suboptimal goal G2 has been 

generated and is in the frontier. 

Let n be an unexpanded node in the frontier such that 

n is on a shortest path to an optimal goal G.

f(G2)  = g(G2)  since h(G2) = 0 

g(G2) > g(G)  since G2 is suboptimal 

f(G)   = g(G)  since h(G) = 0 

f(G2)  > f(G)  from above 
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Proof: Optimality of A*

Suppose some suboptimal goal G2 has been 

generated and is in the frontier. 

Let n be an unexpanded node in the frontier such that 

n is on a shortest path to an optimal goal G.

f(G) < f(G2)  from above 

h(n) ≤ h*(n)  since h is admissible

g(n) + h(n) ≤ g(n) + h*(n) 

f(n) ≤ f(G)
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Hence f(n) < f(G2), and A* will never select G2 for expansion
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Consistent heuristics

A heuristic h(n) is consistent if for every node n, every successor n' of n generated by any 
action a, 

h(n) ≤ c(n, a, n') + h(n')

If h is consistent, we have

        f(n') = g(n') + h(n') 

       = g(n) + c(n, a, n') + h(n') 

       ≥ g(n) + h(n) 

       ≥ f(n)

i.e., f(n) is non-decreasing along any path.

THEOREM

  If h(n) is consistent, A* using GRAPH-SEARCH is optimal

38



Optimality of A*

A* expands nodes in order 

of increasing f value

Gradually adds "f-

contours" of nodes 

Contour i has all nodes 

with f=fi, where fi < fi+1
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Properties of A*

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?

Space complexity?

Optimal?
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Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?
Exponential

Space complexity?
Keeps all nodes in memory

Optimal?
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Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?
Exponential

Space complexity?
Keeps all nodes in memory

Optimal?
Yes
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Admissible heuristics

Example: 8-puzzle:

◦ h1(n) = number of misplaced tiles

◦ h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) = ? 

h2(S) = ?
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Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.

• The cost of an optimal solution to a relaxed problem is an admissible heuristic 
for the original problem.

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,

◦ then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square,

◦ then h2(n) gives the shortest solution

Use relaxation to automatically generate admissible heuristics!
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Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then
◦ h2 dominates h1 

◦ h2 is better for search

• Typical search costs (average number of nodes expanded):
◦ d=12 IDS = 3,644,035 nodes

  A*(h1) = 227 nodes 
  A*(h2) = 73 nodes

◦ d=24 IDS ≈ 54,000,000,000 nodes
  A*(h1) = 39,135 nodes 
  A*(h2) = 1,641 nodes 
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Summary

Smart search based on heuristic scores.

◦ Best-first search

◦ Greedy best-first search

◦ A* search

◦ Admissible heuristics and optimality.
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Why?

• Informed search allows us to use domain knowledge to our advantage.

• Optimality over some utility can often be the top priority.

• A* is very popular! (e.g., pathfinding)

• A* is simple, yet very efficient.

• A* is too good sometimes (e.g., in games).
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