
Informed
Search

INF2D: REASONING AND AGENTS 1

In formatics 2D: Reasoning and Agents

Lecture 4

Review: Summary of algorithms

INF2D: REASONING AND AGENTS 2

Review: Tree search

function TREE-SEARCH(problem) returns a solution, or failure

 initialize the frontier using the initial state of problem

 loop do

 if the frontier is empty then return failure

 choose a leaf node and remove it from the frontier

 if the node contains a goal state then return the corresponding solution

 expand the chosen node, adding the resulting nodes to the frontier

INF2D: REASONING AND AGENTS 3

A search strategy is defined by picking the order of node expansion from

the frontier.

Review: Graph search

INF2D: REASONING AND AGENTS 4

A search strategy is defined by picking the order of node expansion from

the frontier.

Making search 'informed'

• Tree-Search

• Graph Search

INF2D: REASONING AND AGENTS 5

A search strategy is defined by picking the order of node expansion from

the frontier.

What if we order the
nodes in the frontier

by decreasing
desirability?

Best-first search

An instance of general TREE-SEARCH or GRAPH-SEARCH

→ Use an evaluation function f(n) for each node n
◦ estimate of "desirability"

→ Expand most desirable unexpanded node, usually the node with the

lowest evaluation

INF2D: REASONING AND AGENTS 6

Heuristics

• Any method that is believed or practically proven to be useful for the

solution of a given problem.

◦ No guarantee that it will always work or lead to an optimal solution!

• We use heuristics to guide search.

◦ This may not change the worst-case complexity of the algorithm,

but can help in the average case.

• We will introduce admissibility, consistency conditions to identify good

heuristics.

INF2D: REASONING AND AGENTS 7

Romania Example

INF2D: REASONING AND AGENTS 8

Greedy best-first
search

INF2D: REASONING AND AGENTS 9

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

◦ estimated cost of cheapest path from state at node n to a goal state

◦ e.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that appears to be closest

to goal.

INF2D: REASONING AND AGENTS 10

Greedy
best-first search

INF2D: REASONING AND AGENTS 11

Arad

INF2D: REASONING AND AGENTS 12

Sibiu
Timiso-

ara
Zerind

Greedy
best-first
search

INF2D: REASONING AND AGENTS 13

Sibiu
Timiso-

ara
Zerind

Greedy
best-first
search

INF2D: REASONING AND AGENTS 14

Timiso-
ara

Zerind Arad Fagaras Oradea RV

Greedy
best-first
search

INF2D: REASONING AND AGENTS 15

Timiso-
ara

ZerindAradFagaras OradeaRV

Greedy
best-first
search

INF2D: REASONING AND AGENTS 16

Fagaras RV
Timiso-

ara
Arad Zerind Oradea

Greedy
best-first
search

INF2D: REASONING AND AGENTS 17

Fagaras RV
Timiso-

ara
Arad Zerind Oradea Sibiu

Bucha-
restGreedy

best-first
search

Properties of best-first search

Complete?

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 18

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 19

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 20

GRAPH-SEARCH
is complete in
finite spaces.

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 21

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 22

A good heuristic
can lead to

dramatic
improvement!

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?
O(bm) – keeps all nodes in memory

Optimal?

INF2D: REASONING AND AGENTS 23

Properties of best-first search

Complete?
No! Can get stuck in loops.

Time complexity?
O(bm) for tree version

Space complexity?
O(bm) – keeps all nodes in memory

Optimal?
No

INF2D: REASONING AND AGENTS 24

A* Search

INF2D: REASONING AND AGENTS 25

A* search

• Evaluation function f(n) = g(n) + h(n)

◦ g(n) = cost so far to reach n

◦ h(n) = estimated cost from n to goal

◦ f(n) = estimated total cost of path through n to goal

• Avoid expanding paths that are already expensive

INF2D: REASONING AND AGENTS 26

A* search

INF2D: REASONING AND AGENTS 27

A* search

INF2D: REASONING AND AGENTS 28

A* search

INF2D: REASONING AND AGENTS 29

A* search

INF2D: REASONING AND AGENTS 30

A* search

INF2D: REASONING AND AGENTS 31

A* search

INF2D: REASONING AND AGENTS 32

Heuristics

INF2D: REASONING AND AGENTS 33

Admissible heuristics

• A heuristic h(n) is admissible if for every node n:

h(n) ≤ h*(n)

where h*(n) is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the

goal, i.e., it is optimistic

Example: hSLD(n) (never overestimates the actual road distance)

INF2D: REASONING AND AGENTS 34

Admissible heuristic = optimal A*

h(n) never overestimates the cost to reach the goal

Thus, f(n) = g(n) + h(n) never overestimates the true cost of a

solution

THEOREM

 If h(n) is admissible, A* using TREE-SEARCH is optimal

INF2D: REASONING AND AGENTS 35

Proof: Optimality of A*

Suppose some suboptimal goal G2 has been

generated and is in the frontier.

Let n be an unexpanded node in the frontier such that

n is on a shortest path to an optimal goal G.

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

f(G) = g(G) since h(G) = 0

f(G2) > f(G) from above

INF2D: REASONING AND AGENTS 36

Proof: Optimality of A*

Suppose some suboptimal goal G2 has been

generated and is in the frontier.

Let n be an unexpanded node in the frontier such that

n is on a shortest path to an optimal goal G.

f(G) < f(G2) from above

h(n) ≤ h*(n) since h is admissible

g(n) + h(n) ≤ g(n) + h*(n)

f(n) ≤ f(G)

INF2D: REASONING AND AGENTS

Hence f(n) < f(G2), and A* will never select G2 for expansion

37

INF2D: REASONING AND AGENTS

Consistent heuristics

A heuristic h(n) is consistent if for every node n, every successor n' of n generated by any
action a,

h(n) ≤ c(n, a, n') + h(n')

If h is consistent, we have

 f(n') = g(n') + h(n')

 = g(n) + c(n, a, n') + h(n')

 ≥ g(n) + h(n)

 ≥ f(n)

i.e., f(n) is non-decreasing along any path.

THEOREM

 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

38

Optimality of A*

A* expands nodes in order

of increasing f value

Gradually adds "f-

contours" of nodes

Contour i has all nodes

with f=fi, where fi < fi+1

INF2D: REASONING AND AGENTS 39

Properties of A*

Complete?

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 40

Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 41

Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?
Exponential

Space complexity?
Keeps all nodes in memory

Optimal?

INF2D: REASONING AND AGENTS 42

Properties of A*

Complete?
Yes (unless there are infinitely many nodes with f ≤ f(G)

Time complexity?
Exponential

Space complexity?
Keeps all nodes in memory

Optimal?
Yes

INF2D: REASONING AND AGENTS 43

Admissible heuristics

Example: 8-puzzle:

◦ h1(n) = number of misplaced tiles

◦ h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) = ?

h2(S) = ?

INF2D: REASONING AND AGENTS 44

Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem.

• The cost of an optimal solution to a relaxed problem is an admissible heuristic
for the original problem.

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,

◦ then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square,

◦ then h2(n) gives the shortest solution

Use relaxation to automatically generate admissible heuristics!

INF2D: REASONING AND AGENTS 45

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then
◦ h2 dominates h1

◦ h2 is better for search

• Typical search costs (average number of nodes expanded):
◦ d=12 IDS = 3,644,035 nodes

 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

◦ d=24 IDS ≈ 54,000,000,000 nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

INF2D: REASONING AND AGENTS 46

Summary

Smart search based on heuristic scores.

◦ Best-first search

◦ Greedy best-first search

◦ A* search

◦ Admissible heuristics and optimality.

INF2D: REASONING AND AGENTS 47

Why?

• Informed search allows us to use domain knowledge to our advantage.

• Optimality over some utility can often be the top priority.

• A* is very popular! (e.g., pathfinding)

• A* is simple, yet very efficient.

• A* is too good sometimes (e.g., in games).

INF2D: REASONING AND AGENTS 48

	Default Section
	Slide 1: Informed Search
	Slide 2: Review: Summary of algorithms

	Best First Search
	Slide 3: Review: Tree search
	Slide 4: Review: Graph search
	Slide 5: Making search 'informed'
	Slide 6: Best-first search
	Slide 7: Heuristics
	Slide 8: Romania Example

	Greedy Best-First Search
	Slide 9: Greedy best-first search
	Slide 10: Greedy best-first search
	Slide 11: Greedy best-first search
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Properties of best-first search
	Slide 19: Properties of best-first search
	Slide 20: Properties of best-first search
	Slide 21: Properties of best-first search
	Slide 22: Properties of best-first search
	Slide 23: Properties of best-first search
	Slide 24: Properties of best-first search

	A* Search
	Slide 25: A* Search
	Slide 26: A* search
	Slide 27: A* search
	Slide 28: A* search
	Slide 29: A* search
	Slide 30: A* search
	Slide 31: A* search
	Slide 32: A* search

	Heuristics
	Slide 33: Heuristics
	Slide 34: Admissible heuristics
	Slide 35: Admissible heuristic = optimal A*
	Slide 36: Proof: Optimality of A*
	Slide 37: Proof: Optimality of A*
	Slide 38: Consistent heuristics
	Slide 39: Optimality of A*
	Slide 40: Properties of A*
	Slide 41: Properties of A*
	Slide 42: Properties of A*
	Slide 43: Properties of A*
	Slide 44: Admissible heuristics
	Slide 45: Relaxed problems
	Slide 46: Dominance
	Slide 47: Summary
	Slide 48: Why?

