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Constraint satisfaction problems (CSPs)

State

• Set of variables Xi with values from domain Di

Actions

• Assign a value to a variable

Goal test

• A set of constraints specifying allowable combinations of values for subsets of variables

Path cost

• None 
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Simple example of a formal representation language.

Allows useful general-purpose algorithms with more 
power than standard search algorithms.



➢ A set of variables:  X={X1,… Xn}

➢ A set of domains:  D={D1,… Dn}

• each domain Di is a set of possible values for variable Xi

➢ A set of constraints C that specify acceptable combinations of 

values.

• Each c ∈ C consists of:

➢ a scope – tuple of variables (neighbours) involved in the constraint

➢ a relation that defines the values that the variables can take

Structure of a CSP
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Example: Map-Colouring

Variables: {WA, NT, Q, NSW, V, SA, T} 

Domains: Di = {red, green, blue}

Constraints: adjacent regions must have different 

colours,

◦ e.g. WA ≠ NT, 

◦ or (WA,NT) ∈ {(red, green), (red, blue), (green, red), 

 (green, blue), (blue, red), (blue, green)}.
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Example: Map-Colouring

Solutions are complete and consistent assignments,

◦ e.g., WA = red, NT = green, Q = red,

 NSW = green, V = red, SA = blue, T = green.
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Constraint graph

Binary CSP: 

each constraint relates two variables.

Constraint graph: 

nodes are variables, arcs are constraints.
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Varieties of 
CSPs
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• finite domains:

• n variables, domain size d →O(dn), complete assignments.

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete).

• infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job.

• need a constraint language, e.g. StartJob1+ 5 ≤ StartJob3.

Discrete variables:

• e.g. start/end times for Hubble Space Telescope observations.

• linear constraints solvable in polynomial time by linear 
programming.

Continuous variables:



Real-world CSPs

Assignment 
problems

e.g., who teaches what class.

Timetabling 
problems

e.g., which class is offered 
when and where.

Transportation 
scheduling

 Factory scheduling

Notice that many real-world problems involve real-valued variables.
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Varieties of constraints

Unary constraints involve a single variable,
◦ e.g., SA ≠ green.

Binary constraints involve pairs of variables,
◦ e.g., SA ≠ WA.

Higher-order constraints involve 3 or more variables,
◦ e.g., crypt-arithmetic column constraints.

Global constraints involve an arbitrary number of variables
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Example: Crypt-arithmetic

Variables: F T U W R O X1 X2 X3.

Domains: {0,1,2,3,4,5,6,7,8,9}.

Constraints: 

◦ Alldiff (F,T,U,W,R,O)

◦ O + O = R + 10 · X1

◦ X1 + W + W = U + 10 · X2

◦ X2 + T + T = O + 10 · X3

◦ X3 = F, T ≠ 0, F ≠ 0

constraint

hypergraph

Hypernode
(n-ary constraint)

Global constraint
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Search in CSPs
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Standard search formulation 
(incremental)

➢ States are defined by the values assigned so far.

Initial state: the empty assignment { }

Successor function: 

assign a value to an unassigned variable that does not conflict with current assignment

→ fail if no legal assignments.

Goal test: the current assignment is complete.

➢ For a CSP with n variables, every solution appears at depth n
       → use depth-first search!
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Backtracking search

➢ Variable assignments are commutative,
◦ e.g.,  [ WA = red then NT = green ] same as [ NT = green 

then WA = red ].

➢Only need to consider assignments to a 
single variable at each node

➢Depth-first search for CSPs with single-variable 
assignments is called backtracking search.

➢ Backtracking search is the basic
 uninformed algorithm for CSPs.
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8-queens problem



Backtracking 
search
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Backtracking 
example
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Backtracking 
example
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Backtracking 
example
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Backtracking 
example
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Backtracking 
example
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Can we eliminate some 
symmetrical nodes?
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Backtracking 
example
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Can we eliminate some 
symmetrical nodes?
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Smart Search in CSPs
… or how to improve from backtracking
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Improving backtracking 
efficiency

General-purpose methods can give huge 
gains in speed:
➢Which variable should be assigned next?

◦ SELECT-UNASSIGNED-VARIABLE

➢ In what order should its values be tried?

◦ ORDER-DOMAIN-VALUES

➢What inferences should be performed at each 
step of the search?

◦ INFERENCE

➢ Can we detect inevitable failure early?
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Most constrained variable

var <- SELECT-UNASSIGNED-VARIABLE(csp)

➢Most constrained variable:

◦ choose the variable with the fewest legal values.

a.k.a. minimum-remaining-values (MRV) heuristic.
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The Degree Heuristic

➢ Good to identify an initial state

➢ Tie-breaker among most constrained variables.

➢Most constraining variable:

◦ choose the variable with the most constraints on remaining variables 

thus reducing branching.
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Least constraining value

for value in ORDER-DOMAIN-VALUES(var, assignment, csp)

➢ Least constraining value:
◦ given a variable, choose the value that rules out the fewest values in the remaining 

variables.

◦ Combining these heuristics makes 1000 queens feasible!
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Least constraining value

for value in ORDER-DOMAIN-VALUES(var, assignment, csp)

➢ Least constraining value:
◦ given a variable, choose the value that rules out the fewest values in the remaining 

variables.

◦ Combining these heuristics makes 1000 queens feasible!

1 value left 
for SA

0 values left 
for SA
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Forward checking
Idea: 

◦ Keep track of remaining legal values for unassigned variables.

◦ Terminate search when any variable has no legal values.

WA NT Q NSW V SA T
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Constraint propagation
Forward checking propagates information from assigned to unassigned 
variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

WA NT Q NSW V SA T
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Arc consistency

Simplest form of propagation makes each arc consistent.

X →Y is consistent iff for every value x of in the domain of X 

there is some allowed y in the domain of Y.

Is there a value for X that makes the domain of Y empty?

Can be run as a preprocessor or after each assignment.

Start with all directed arcs from the graph (18 here):

WA→NT, WA→SA, NT→WA, NT→SA, NT→Q, Q→NT, Q→SA, 

Q→NSW, SA→WA, SA→NT, SA→Q, SA→NSW, SA→V, 

NSW→Q, NSW→SA, NSW→V, V→SA, V→NSW
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

WA NT Q NSW V SA T
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

Once a value is removed, add all arcs pointing to X back in the queue!

WA NT Q NSW V SA TDomain of NSW 
became smaller, so 
some arcs may have 

become inconsistent!
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

Once a value is removed, add all arcs pointing to X back in the queue!

WA NT Q NSW V SA T

Add: 
V→NSW 

SA→NSW 
Q→NSW 
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T
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Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T

Fail!

Arc consistency detects failure earlier than forward checking.
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Arc consistency 
algorithm AC-3

Time complexity: O(cd3), 

where:

➢ d is maximum size of each 

domain, 

➢ c is the number of binary 

constraints (arcs).
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Make Xi arc-consistent with respect to Xj

No consistent value left for Xi so fail

Since revision occurred, add all 
neighbours of Xi for consideration 
(or reconsideration)
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Summary

➢CSPs are a special kind of problem:
◦ states defined by values of a fixed set of variables

◦ goal test defined by constraints on variable values

➢ Backtracking = depth-first search with one variable assigned per node

➢ Variable ordering and value selection heuristics help significantly

➢ Forward checking prevents assignments that guarantee later failure

➢Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies
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Why?

➢ CSPs are prevalent in modern computation.

➢ Examples include: resource allocation, planning & scheduling, 

automated configuration, puzzles/games.

➢More complex problem formulations exist: e.g., Distributed Constraint 

Optimisation Problems (DCOPs).

➢Other solutions exist too: e.g., genetic algorithms, optimization

INF2D: REASONING AND AGENTS 45


	Default Section
	Slide 1: Smart Search using Constraints

	Constraint Satisfaction Problems
	Slide 2: Constraint satisfaction problems (CSPs)
	Slide 3: Constraint satisfaction problems (CSPs)
	Slide 4: Structure of a CSP
	Slide 5: Example: Map-Colouring
	Slide 6: Example: Map-Colouring
	Slide 7: Constraint graph
	Slide 8: Constraint graph
	Slide 9: Varieties of CSPs
	Slide 10: Real-world CSPs
	Slide 11: Varieties of constraints
	Slide 12: Example: Crypt-arithmetic

	Search in CSPs
	Slide 13: Search in CSPs
	Slide 14: Standard search formulation (incremental)
	Slide 15: Backtracking search
	Slide 16: Backtracking search
	Slide 17: Backtracking example
	Slide 18: Backtracking example
	Slide 19: Backtracking example
	Slide 20: Backtracking example
	Slide 21: Backtracking example
	Slide 22: Backtracking example

	Smart Search in CSPs
	Slide 23: Smart Search in CSPs
	Slide 24: Improving backtracking efficiency
	Slide 25: Most constrained variable
	Slide 26: The Degree Heuristic
	Slide 27: Least constraining value
	Slide 28: Least constraining value
	Slide 29: Forward checking
	Slide 30: Forward checking
	Slide 31: Forward checking
	Slide 32: Forward checking
	Slide 33: Constraint propagation
	Slide 34: Arc consistency
	Slide 35: Arc consistency
	Slide 36: Arc consistency
	Slide 37: Arc consistency
	Slide 38: Arc consistency
	Slide 39: Arc consistency
	Slide 40: Arc consistency
	Slide 41: Arc consistency
	Slide 42: Arc consistency
	Slide 43: Arc consistency algorithm AC-3
	Slide 44: Summary
	Slide 45: Why?


