
Smart Search
using
Constraints

INF2D: REASONING AND AGENTS 1

In formatics 2D: Reasoning and Agents

Lecture 5

Constraint satisfaction problems (CSPs)

State

• Set of variables Xi with values from domain Di

Actions

• Assign a value to a variable

Goal test

• A set of constraints specifying allowable combinations of values for subsets of variables

Path cost

• None

INF2D: REASONING AND AGENTS 2

Constraint satisfaction problems (CSPs)

State

• Set of variables Xi with values from domain Di

Actions

• Assign a value to a variable

Goal test

• A set of constraints specifying allowable combinations of values for subsets of variables

Path cost

• None

INF2D: REASONING AND AGENTS 3

Simple example of a formal representation language.

Allows useful general-purpose algorithms with more
power than standard search algorithms.

➢ A set of variables: X={X1,… Xn}

➢ A set of domains: D={D1,… Dn}

• each domain Di is a set of possible values for variable Xi

➢ A set of constraints C that specify acceptable combinations of

values.

• Each c ∈ C consists of:

➢ a scope – tuple of variables (neighbours) involved in the constraint

➢ a relation that defines the values that the variables can take

Structure of a CSP

INF2D: REASONING AND AGENTS 4

Example: Map-Colouring

Variables: {WA, NT, Q, NSW, V, SA, T}

Domains: Di = {red, green, blue}

Constraints: adjacent regions must have different

colours,

◦ e.g. WA ≠ NT,

◦ or (WA,NT) ∈ {(red, green), (red, blue), (green, red),

 (green, blue), (blue, red), (blue, green)}.

INF2D: REASONING AND AGENTS 5

Example: Map-Colouring

Solutions are complete and consistent assignments,

◦ e.g., WA = red, NT = green, Q = red,

 NSW = green, V = red, SA = blue, T = green.

INF2D: REASONING AND AGENTS 6

Constraint graph

Binary CSP:

each constraint relates two variables.

Constraint graph:

nodes are variables, arcs are constraints.

INF2D: REASONING AND AGENTS 7

Constraint graph

Binary CSP:

each constraint relates two variables.

Constraint graph:

nodes are variables, arcs are constraints.

INF2D: REASONING AND AGENTS 8

Varieties of
CSPs

INF2D: REASONING AND AGENTS 9

• finite domains:

• n variables, domain size d →O(dn), complete assignments.

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete).

• infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job.

• need a constraint language, e.g. StartJob1+ 5 ≤ StartJob3.

Discrete variables:

• e.g. start/end times for Hubble Space Telescope observations.

• linear constraints solvable in polynomial time by linear
programming.

Continuous variables:

Real-world CSPs

Assignment
problems

e.g., who teaches what class.

Timetabling
problems

e.g., which class is offered
when and where.

Transportation
scheduling

 Factory scheduling

Notice that many real-world problems involve real-valued variables.

INF2D: REASONING AND AGENTS 10

Games

Varieties of constraints

Unary constraints involve a single variable,
◦ e.g., SA ≠ green.

Binary constraints involve pairs of variables,
◦ e.g., SA ≠ WA.

Higher-order constraints involve 3 or more variables,
◦ e.g., crypt-arithmetic column constraints.

Global constraints involve an arbitrary number of variables

INF2D: REASONING AND AGENTS 11

Example: Crypt-arithmetic

Variables: F T U W R O X1 X2 X3.

Domains: {0,1,2,3,4,5,6,7,8,9}.

Constraints:

◦ Alldiff (F,T,U,W,R,O)

◦ O + O = R + 10 · X1

◦ X1 + W + W = U + 10 · X2

◦ X2 + T + T = O + 10 · X3

◦ X3 = F, T ≠ 0, F ≠ 0

constraint

hypergraph

Hypernode
(n-ary constraint)

Global constraint

INF2D: REASONING AND AGENTS 12

Search in CSPs

INF2D: REASONING AND AGENTS 13

Standard search formulation
(incremental)

➢ States are defined by the values assigned so far.

Initial state: the empty assignment { }

Successor function:

assign a value to an unassigned variable that does not conflict with current assignment

→ fail if no legal assignments.

Goal test: the current assignment is complete.

➢ For a CSP with n variables, every solution appears at depth n
 → use depth-first search!

INF2D: REASONING AND AGENTS 14

Backtracking search

➢ Variable assignments are commutative,
◦ e.g., [WA = red then NT = green] same as [NT = green

then WA = red].

➢Only need to consider assignments to a
single variable at each node

➢Depth-first search for CSPs with single-variable
assignments is called backtracking search.

➢ Backtracking search is the basic
 uninformed algorithm for CSPs.

INF2D: REASONING AND AGENTS 15

8-queens problem

Backtracking
search

INF2D: REASONING AND AGENTS 16

Backtracking
example

INF2D: REASONING AND AGENTS 17

Backtracking
example

18INF2D: REASONING AND AGENTS

Backtracking
example

19INF2D: REASONING AND AGENTS

Backtracking
example

20INF2D: REASONING AND AGENTS

Backtracking
example

21

Can we eliminate some
symmetrical nodes?

INF2D: REASONING AND AGENTS

Backtracking
example

22

Can we eliminate some
symmetrical nodes?

INF2D: REASONING AND AGENTS

Smart Search in CSPs
… or how to improve from backtracking

INF2D: REASONING AND AGENTS 23

Improving backtracking
efficiency

General-purpose methods can give huge
gains in speed:
➢Which variable should be assigned next?

◦ SELECT-UNASSIGNED-VARIABLE

➢ In what order should its values be tried?

◦ ORDER-DOMAIN-VALUES

➢What inferences should be performed at each
step of the search?

◦ INFERENCE

➢ Can we detect inevitable failure early?

INF2D: REASONING AND AGENTS 24

Most constrained variable

var <- SELECT-UNASSIGNED-VARIABLE(csp)

➢Most constrained variable:

◦ choose the variable with the fewest legal values.

a.k.a. minimum-remaining-values (MRV) heuristic.

INF2D: REASONING AND AGENTS 25

Variable
Ordering

The Degree Heuristic

➢ Good to identify an initial state

➢ Tie-breaker among most constrained variables.

➢Most constraining variable:

◦ choose the variable with the most constraints on remaining variables

thus reducing branching.

INF2D: REASONING AND AGENTS 26

Variable
Ordering

Least constraining value

for value in ORDER-DOMAIN-VALUES(var, assignment, csp)

➢ Least constraining value:
◦ given a variable, choose the value that rules out the fewest values in the remaining

variables.

◦ Combining these heuristics makes 1000 queens feasible!

INF2D: REASONING AND AGENTS 27

Variable
Ordering

Value
Ordering

Least constraining value

for value in ORDER-DOMAIN-VALUES(var, assignment, csp)

➢ Least constraining value:
◦ given a variable, choose the value that rules out the fewest values in the remaining

variables.

◦ Combining these heuristics makes 1000 queens feasible!

1 value left
for SA

0 values left
for SA

INF2D: REASONING AND AGENTS 28

Variable
Ordering

Value
Ordering

Forward checking
Idea:

◦ Keep track of remaining legal values for unassigned variables.

◦ Terminate search when any variable has no legal values.

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 29

Variable
Ordering

Value
Ordering

Inference

Forward checking
Idea:

◦ Keep track of remaining legal values for unassigned variables.

◦ Terminate search when any variable has no legal values.

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 30

Variable
Ordering

Value
Ordering

Inference

Forward checking
Idea:

◦ Keep track of remaining legal values for unassigned variables.

◦ Terminate search when any variable has no legal values.

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 31

Variable
Ordering

Value
Ordering

Inference

Forward checking
Idea:

◦ Keep track of remaining legal values for unassigned variables.

◦ Terminate search when any variable has no legal values.

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 32

Variable
Ordering

Value
Ordering

Inference

Constraint propagation
Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 33

Variable
Ordering

Value
Ordering

Inference

Arc consistency

Simplest form of propagation makes each arc consistent.

X →Y is consistent iff for every value x of in the domain of X

there is some allowed y in the domain of Y.

Is there a value for X that makes the domain of Y empty?

Can be run as a preprocessor or after each assignment.

Start with all directed arcs from the graph (18 here):

WA→NT, WA→SA, NT→WA, NT→SA, NT→Q, Q→NT, Q→SA,

Q→NSW, SA→WA, SA→NT, SA→Q, SA→NSW, SA→V,

NSW→Q, NSW→SA, NSW→V, V→SA, V→NSW

INF2D: REASONING AND AGENTS 34

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 35

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 36

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

Once a value is removed, add all arcs pointing to X back in the queue!

WA NT Q NSW V SA TDomain of NSW
became smaller, so
some arcs may have

become inconsistent!

INF2D: REASONING AND AGENTS 37

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

Once a value is removed, add all arcs pointing to X back in the queue!

WA NT Q NSW V SA T

Add:
V→NSW

SA→NSW
Q→NSW

INF2D: REASONING AND AGENTS 38

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

e.g. NSW → SA

Once a value is removed, add all arcs pointing to X back in the queue!

WA NT Q NSW V SA T

Add:
V→NSW

SA→NSW
Q→NSW

INF2D: REASONING AND AGENTS 39

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 40

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T

INF2D: REASONING AND AGENTS 41

Variable
Ordering

Value
Ordering

Inference

Arc consistency

X→Y : Is there a value for X that makes the domain of Y empty?

Eventually check SA→NT

WA NT Q NSW V SA T

Fail!

Arc consistency detects failure earlier than forward checking.

INF2D: REASONING AND AGENTS 42

Variable
Ordering

Value
Ordering

Inference

Arc consistency
algorithm AC-3

Time complexity: O(cd3),

where:

➢ d is maximum size of each

domain,

➢ c is the number of binary

constraints (arcs).

INF2D: REASONING AND AGENTS 43

Make Xi arc-consistent with respect to Xj

No consistent value left for Xi so fail

Since revision occurred, add all
neighbours of Xi for consideration
(or reconsideration)

Variable
Ordering

Value
Ordering

Inference

Summary

➢CSPs are a special kind of problem:
◦ states defined by values of a fixed set of variables

◦ goal test defined by constraints on variable values

➢ Backtracking = depth-first search with one variable assigned per node

➢ Variable ordering and value selection heuristics help significantly

➢ Forward checking prevents assignments that guarantee later failure

➢Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

INF2D: REASONING AND AGENTS 44

Why?

➢ CSPs are prevalent in modern computation.

➢ Examples include: resource allocation, planning & scheduling,

automated configuration, puzzles/games.

➢More complex problem formulations exist: e.g., Distributed Constraint

Optimisation Problems (DCOPs).

➢Other solutions exist too: e.g., genetic algorithms, optimization

INF2D: REASONING AND AGENTS 45

	Default Section
	Slide 1: Smart Search using Constraints

	Constraint Satisfaction Problems
	Slide 2: Constraint satisfaction problems (CSPs)
	Slide 3: Constraint satisfaction problems (CSPs)
	Slide 4: Structure of a CSP
	Slide 5: Example: Map-Colouring
	Slide 6: Example: Map-Colouring
	Slide 7: Constraint graph
	Slide 8: Constraint graph
	Slide 9: Varieties of CSPs
	Slide 10: Real-world CSPs
	Slide 11: Varieties of constraints
	Slide 12: Example: Crypt-arithmetic

	Search in CSPs
	Slide 13: Search in CSPs
	Slide 14: Standard search formulation (incremental)
	Slide 15: Backtracking search
	Slide 16: Backtracking search
	Slide 17: Backtracking example
	Slide 18: Backtracking example
	Slide 19: Backtracking example
	Slide 20: Backtracking example
	Slide 21: Backtracking example
	Slide 22: Backtracking example

	Smart Search in CSPs
	Slide 23: Smart Search in CSPs
	Slide 24: Improving backtracking efficiency
	Slide 25: Most constrained variable
	Slide 26: The Degree Heuristic
	Slide 27: Least constraining value
	Slide 28: Least constraining value
	Slide 29: Forward checking
	Slide 30: Forward checking
	Slide 31: Forward checking
	Slide 32: Forward checking
	Slide 33: Constraint propagation
	Slide 34: Arc consistency
	Slide 35: Arc consistency
	Slide 36: Arc consistency
	Slide 37: Arc consistency
	Slide 38: Arc consistency
	Slide 39: Arc consistency
	Slide 40: Arc consistency
	Slide 41: Arc consistency
	Slide 42: Arc consistency
	Slide 43: Arc consistency algorithm AC-3
	Slide 44: Summary
	Slide 45: Why?

