Adversarial =
S calrC h ?* \

Informatics 2D: Reasoning and Agents
Lecture 6

Games vs. Search Problems

"Unpredictable" opponent = solution is a strategy / policy

o Specify a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

.“

Backgammon,
Monopoly

Battleship Card games, Scrabble

perfect information Chess, Checkers

INF2D: REASONING AND AGENTS

Games vs. Search Problems

We are interested in zero-sum games:

o Deterministic, perfect information
o Agents act alternately

o Utilities at end of game are equal and
opposite (adding up to 0)

> This opposition between the agents' utility
functions makes the situation is adversarial

INF2D: REASONING AND AGENTS 3

MAX (X)

Game Tree for Tic-Tac-Toe

(2-player, deterministic, turns) e FEH HH HF WH HH H B FEH H-
e 2 players: MAX and MIN wxey T P o

~—
e MAX moves first o, PO PIS[]]

e Game tree built from ~—
MAX'’s point of view

o|xo— :

= [x|ojo}l—
IS

x[o[x] [x X[o[x
TERMINAL o/Xl [0
0 X X|o[o
Utility = +1

INF2D: REASONING AND AGENTS 4

MAX (X)

Game Tree for Tic-Tac-Toe J h
(2-player, deterministic, turns) — me T B0 B RO B O O S A
e Sy: the initial state MAX (0 Q

® P/ayer(s) o) x[o]X ;o x?{

e Actions(s) ~—

* Result(s,a): the transition model L xlx xlx |

e Terminal-Test(s) ity Faiiareiave

o Utility(s,p): a utility function

INF2D: REASONING AND AGENTS S

Optimal Decisions

Normal search:

o optimal decision is a sequence of actions leading to a goal state
(i.e., a solution that satisfies the goal test)

Adversarial search:

MIN has a say in game
- MAX needs to find a contingent strategy which specifies:
» MAX’s move in initial state then...
» MAX’s moves in states resulting from every response by MIN to the move then...

» MAX’s moves in states resulting from every response by MIN to those moves, etc...

INF2D: REASONING AND AGENTS 6

Minimax value

minimax value of a node = utility for MAX of being in corresponding state:

UTILITY(s) if TERMINAL-TEST(s)

MINIMAX(s) = max) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX

acActions

MiN, cacionsts) MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

INF2D: REASONING AND AGENTS 7

Minimax AT

Perfect play for
deterministic, perfect-

| . VARN VARN VARN
information games A1 A2 Aqg Az1 A22 Ag3 Azq A3 Ass

ldea: choose move to ’ ’ ’ ; ’ :
position with highest
minimax value | 3 3 5 5) = T3 E 5 |

= best achievable payoff
against best play

INF2D: REASONING AND AGENTS 8

utility values for MAX

Minimax AT

Perfect play for
deterministic, perfect-

| . VARN VARN VARN
information games A1 A2 Aqg Az1 A22 Ag3 Azq A3 Ass

ldea: choose move to ’ ’ ’ ; ’ :
position with highest
minimax value | 3 3 5 5) = T3 E 5 |

= best achievable payoff
against best play

INF2D: REASONING AND AGENTS 9

utility values for MAX

Minimax
function MINIMAX-DECISION(state) returns an action a ‘ 9 O g it h m

return arg mEI.Xa = ACTIDNS(SJ M]N'VALUE{RESULT(Stﬂ-tS. ﬂ—))

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state) ldea:

V+— —00

for each a in ACTIONS(state) do > Proceed all the way down
v+« MAX(v, MIN-VALUE(RESULT(s, a))) to the leaves of the tree

return v

> then minimax values are
function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U 00
for each a in ACTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s, a)))
return v

backed up through tree

INF2D: REASONING AND AGENTS 10

Properties of Minimax

r Complete?

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 1

Properties of Minimax

V_ Complete?
= Yes (if tree is finite)

Time complexity?

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 12

Properties of Minimax

V_ Complete?
= Yes (if tree is finite)

Time complexity?
O(b™)

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 13

Properties of Minimax

V_ Complete?
= Yes (if tree is finite)

Time complexity?
O(b™)

Space complexity?
O(bm)

Optimal?

INF2D: REASONING AND AGENTS 14

Properties of Minimax

o Complete?
= Yes (if tree is finite)
@ Time complexity?
O(b™)

Space complexity?
O(bm)

| % Optimal?
| Yes (against an optimal opponent)

INF2D: REASONING AND AGENTS 15

ullis

For chess, b = 35, m =100 (average = 40) for "reasonable" games

Time Complexity

» exact solution completely infeasible!

» would like to eliminate (large) parts of game tree

3540=5.791x 10°"
35100=2.552 x 10">4

INF2D: REASONING AND AGENTS 16

-xercise (Minimax)

MAX

AR AL @‘5\?

NS //WWW gesnare.net/nisnantn Ipramaniam90/answer-quiz-minimax

https://www.slideshare.net/nishanthysubramaniam90/answer-quiz-minimax

-xercise (Minimax) -- Your turn!

http://wwwe.isle.illin oi

INF2D: REASONING AND AGENTS

Consider the minimax game tree shown below. Decisions by MAX are represented as upward-
pointing triangles; decisions by MIN are represented as downward-pointing triangles; small
letters denote outcomes of the game:

c e f

The values of each of the outcomes, to the MAX player, are as shown in the following table:

Outcome
a b ¢ d e f g h
Value to the MAX player: |8 3 1 7 2 5 6 4
h_web_| rsematerial 44 2021/exam3_review.pdf

http://www.isle.illinois.edu/speech_web_lg/coursematerials/ece448/sp2021/exam3_review.pdf

o Black: Maximize

B 1] White: Miaimize

S

e
e e a a ﬂ o a Black: Maximize

)

[
White's maves

] LI 0 (][] [s] 2] G DR EAGEE o

a-6 Pruning

INF2D: REASONING AND AGENTS 19

a-6 pruning example

INF2D: REASONING AND AGENTS 20

a-6 pruning example

INF2D: REASONING AND AGENTS 21

a-6 pruning example

X

!
’
!
!
ra
A

INF2D: REASONING AND AGENTS 22

a-6 pruning example

. , r !
I N, I LY r

! W, ! , !

. ', r ', !

! h ! W, r

v , ! ', !

r LY r LY r
A A A \ Ax

12

INF2D: REASONING AND AGENTS 23

a-6 pruning example

A, ry
A ", I
ry %, A
", r
%, A
\\ /z

X /
LY I
X y
X /
\ y
X ;
kN r

\,
% r
%, /
\\ /_,
\, /

N, I
., /
% /

, r
, r
LY r
A A

12

AT
A
/
/
/
//
/
I
/
/
/
7
r
A

5

INF2D: REASONING AND AGENTS 24

a-6 pruning example

INF2D: REASONING AND AGENTS 25

a-6 pruning
example

Are minimax value of root and, hence, minimax decision
independent of pruned leaves?

Let pruned leaves have values u and v,

MINIMAX(root)

= max(min(3,12,8), min(2,u,v), min(14,5,2))

= max(3, min(2,u,v), 2)
= max(3, z, 2) wherez <2

=3

INF2D: REASONING AND AGENTS

26

a-6 pruning
example

Are minimax value of root and, hence, minimax decision
independent of pruned leaves?

Let pruned leaves have values u and v,

MINIMAX(root)

= max(min(3,12,8), min(2,u,v), min(14,5,2))

= max(3, min(2,u,v), 2)
= max(3, z, 2) wherez <2

=3

INF2D: REASONING AND AGENTS 27

HW: Exercise
(alpha-beta pruning, lett-to-right evaluation)

MAX

https://www.slideshare.net/nishanthysubramaniam90/answer-quiz-minimax

Why is it called

MAX o-6 %
> ais the value of the best (i.e., highest-
MIN _ .
value) choice found so far at any choice
point along the path for MAX
_ > |f vis worse than a, MAX will avoid it
- prune that branch
MAX » B8 is defined symmetrically for MIN
MIN v

INF2D: REASONING AND AGENTS 29

function ALPHA-BETA-SEARCH(state) returns an action
v «— MAX-VALUE(state, —o0, +00)

T q e a- 6 return the action in ACTIONS(state) with value v

a O ri-t h m function MAX-VALUE(state, o, (3) returns a utilily value
g if TERMINAL-TEST(state) then return UTILITY(state)
V& —0Q
for each a in ACTIONS(state) do
> ais value of the besti.e,, v« MAX(v, MIN-VALUE(RESULT(s,a), @, 3))
highest-value choice found if v > { then return v

o — MAX(a, v)

so far at any choice point return v

along the path for MAX

function MIN-VALUE(state, «, (3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

.) V< +00
> B is value of the besti.e,, for each a in ACTIONS(state) do
lowest-value choice found v < MIN(v, MAX-VALUE(RESULT(s,a) , «, (3))

if v < «then return v
(3 «— MIN(3, v)
return v

so far at any choice point
along the path for MIN

INF2D: REASONING AND AGENTS 30

Complexity of a-8

Pruning does NOt affe(:t final result (as we saw for example)
Good move ordering improves effectiveness of pruning

With “perfect ordering”, time complexity = O(b™?)
> branching factor goes from b to Vb
> doubles solvable depth of search compared to minimax

A simple example of the value of reasoning about which
computations are relevant (a form of meta-reasoning)

31

INF2D: REASONING AND AGENTS

Resource limits

ullis

Suppose we have 100 secs and can explore 104 nodes/sec
» 10° nodes per move

> bm = 10°
> Forb=35->35=15x102>som =4

4-ply lookahead is a hopeless chess player!
o 4-ply ~ human novice

o 8-ply = typical PC, human master

o 12-ply = Deep Blue, Kasparov

INF2D: REASONING AND AGENTS 32

Altering Minimax or Alpha-Beta

» We cannot generate the entire game search space, not practical!

> Cutoff test

e.g., depth limit (perhaps add quiescence search, which tries to search interesting
positions to a greater depth than quiet ones)

» Evaluation function
= estimated desirability of a position (like what we did for A*)

INF2D: REASONING AND AGENTS 33

function ALPHA-BETA-SEARCH(state) returns an action
v «— MAX-VALUE(state, —o0, +00)

T q e a- 6 return the action in ACTIONS(state) with value v

a O ri-t h m function MAX-VALUE(state, o, (3) returns a utilily value
g if TERMINAL-TEST(state) then return UTILITY(state)
V& —0Q
for each a in ACTIONS(state) do
> ais value of the besti.e,, v« MAX(v, MIN-VALUE(RESULT(s,a), @, 3))
highest-value choice found if v > { then return v

o — MAX(a, v)

so far at any choice point return v

along the path for MAX

function MIN-VALUE(state, «, (3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

.) V< +00
> B is value of the besti.e,, for each a in ACTIONS(state) do
lowest-value choice found v < MIN(v, MAX-VALUE(RESULT(s,a) , «, (3))

if v < «then return v
(3 «— MIN(3, v)
return v

so far at any choice point
along the path for MIN

INF2D: REASONING AND AGENTS 34

function ALPHA-BETA-SEARCH(state) returns an action
v «— MAX-VALUE(state, —o0, +00)

T q e a- 6 return the action in ACTIONS(state) with value v

a g O ri-t h m function MAX-VALUE(state, o, (3) returns a utilily value
UV —0OQ0
for each a in ACTIONS(state) do
| et's cut Oﬁ the search! v +— MAX(v, MIN-VALUE(RESULT(s,a), o, (3))

if v > [then return v
o — MAX(a, v)
return v

function MIN-VALUE(state, «, (3) returns a utility value
e Rl o barbesm R OB e e
vV +00
for each a in ACTIONS(state) do
v «— MIN(v, MAX-VALUE(RESULT(s,a) ,a, 3))
if v < «then return v
(3 «— MIN(3, v)
return v

INF2D: REASONING AND AGENTS 35

function ALPHA-BETA-SEARCH(state) returns an action
v «— MAX-VALUE(state, —o0, +00)

T q e a- 6 return the action in ACTIONS(state) with value v
a g O ri-t h m function MAX-VALUE(state, o, 3) returns a utility value

if CUTOFF-TEST (state, depth) then return EVAL(state)
UV — —0CC0

for each a in ACTIONS(state) do

| et's cut O{-f the seg I’Ch! v — MAX(v, MIN-VALUE(RESULT(s,a), o, 3))
if v > [then return v

> Cutoff-Test returns true for: o — MAX(ev, v)
return v

o all depth greater than d

I .) function MIN-VALUE(state, a, 3) returns a utility value
° all terminal states just as if CUTOFE-TEST(state, depth) then return EVAL(state)

Terminal-Test U F0o0
for each a in ACTIONS(state) do

v «— MIN(v, MAX-VALUE(RESULT(s,a) ,a, 3))
if v < «then return v
(3 «— MIN(3, v)

return v

INF2D: REASONING AND AGENTS 36

“valuation functions

Often a linear weighted sum of features
EVAL(s) = w, f,(s) + w, f5(s) + ... + w, f (s)

where each w, is a weight and each . is a feature of state s

Chess example

o queen = 1, king = 2, etc.

o f. = number of pieces of type i on board
o w; = value of the piece of type i

INF2D: REASONING AND AGENTS 37

Deterministic games
IN practice

Checkers

Playing checkers on the 701

On February 24, 1956, Arthur Samuel’s Checkers program, which was developed for play on
the IBM 701, was demonstrated to the public on television. In 1962, self-proclaimed checkers
master Robert Nealey played the game on an IBM 7094 computer. The computer won. Other
games resulted in losses for the Samuel Checkers program, but it is still considered a
milestone for artificial intelligence, and offered the public in the early 1960s an example of
the capabilities of an electronic computer.

01/02

h //www.ibm.com/ibm/history/ibm1 n/icons/ibm7 ries/im

INF2D: REASONING AND AGENTS

Chinook ended 40-year-reign of human
world champion Marion Tinsley in 1994.
Used a precomputed endgame database
defining perfect play for all positions
involving 8 or fewer pieces on the board,
a total of 444 billion positions.

http://jonathanschaeffer.bl m/2012 hinook-twenty-vears-later.html

39

https://www.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/
http://jonathanschaeffer.blogspot.com/2012/08/chinook-twenty-years-later.html

INF2D: REASONING AND AGENTS

Chess

Deep Blue defeated human world champion
Garry Kasparov in a six-game match in 1997. Deep
Blue searches 200 million positions per second,
uses very sophisticated evaluation, and
undisclosed methods for extending some lines of
search up to 40-ply.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

Modern Chess
: AlphaZero

¢ Uses and advanced ® Based on Monte Carlo tree ® Released 2017 with ideas
version of a-B pruning search, deep neural from AlphaGo Zero's
among other algorithms. networks and self-play. paper.
® Recently added a simple * Analyses 80,000 positions * Believed to have
neural network in its per second. surpassed AlphaZero.
evaluation. e Defeated Stockfish with ® Neck to neck with modern
* Improved by 100+ Elo 28W-72D-0L in 2016. Stockfish, losing narrowly
points since. to it in the last 3 TCEC (Top
* Analyses 108 positions per Chess Engine
second (half when using Championship) super
the neural network). finals.

INF2D: REASONING AND AGENTS 41

Go

» In Go, b > 300, so most programs use
pattern knowledge bases to suggest plausible moves.

» In 2015 AlphaGo became the first computer program
to beat a human professional Go player (Fan Hui)
without handicap.

» In 2016 AlphaGo beat world’s #2 Lee Sedol 4-1.

o
» Evolved into AlphaGo Zero (without human datasets), __-)__‘)‘_% ’1%"
then AlphaZero, and more recently MuZero (model- RANA 4 .09
free) .

Game 4, Lee Sedol (white) v. AlphaGo (black).
First 78 moves

INF2D: REASONING AND AGENTS 42

https://en.wikipedia.org/wiki/Lee_Sedol

ARTIFICIAL INTELLIGENCE, TECHNOLOGY

Playing Pacman with Multi-Agents Adversarial

Search
FEBRUARY 13,2020 In this post, we are going to design various artificial
#MINIMAX, # PACMAN intelligence agents to play the classic version of Pacman,

1 - I A - | n ™ : ir (N

https://davideliu.com/2020/02/13/playing-pacman-with-multi-agents-adversarial-search/

INF2D: REASONING AND AGENTS 43

https://davideliu.com/2020/02/13/playing-pacman-with-multi-agents-adversarial-search/

Summary

» Games are fun to work on!

» They illustrate several important points about Al.

» Perfection is unattainable - must approximate!

» Good idea to think about what to think about (meta-reasoning)

» Modern Al demonstrating superhuman performance.

INF2D: REASONING AND AGENTS 44

	Default Section
	Slide 1: Adversarial Search
	Slide 2: Games vs. Search Problems
	Slide 3: Games vs. Search Problems

	Minimax
	Slide 4: Game Tree for Tic-Tac-Toe (2-player, deterministic, turns)
	Slide 5: Game Tree for Tic-Tac-Toe (2-player, deterministic, turns)
	Slide 6: Optimal Decisions
	Slide 7: Minimax value
	Slide 8: Minimax
	Slide 9: Minimax
	Slide 10: Minimax algorithm
	Slide 11: Properties of Minimax
	Slide 12: Properties of Minimax
	Slide 13: Properties of Minimax
	Slide 14: Properties of Minimax
	Slide 15: Properties of Minimax
	Slide 16: Time Complexity
	Slide 17: Exercise (Minimax)
	Slide 18: Exercise (Minimax) -- Your turn!

	α-β pruning
	Slide 19: α-β Pruning
	Slide 20: α-β pruning example
	Slide 21: α-β pruning example
	Slide 22: α-β pruning example
	Slide 23: α-β pruning example
	Slide 24: α-β pruning example
	Slide 25: α-β pruning example
	Slide 26: α-β pruning example
	Slide 27: α-β pruning example
	Slide 28: HW: Exercise (alpha-beta pruning, left-to-right evaluation)
	Slide 29: Why is it called α-β?
	Slide 30: The α-β algorithm
	Slide 31: Complexity of α-β

	Resource Limits
	Slide 32: Resource limits
	Slide 33: Altering Minimax or Alpha-Beta
	Slide 34: The α-β algorithm
	Slide 35: The α-β algorithm
	Slide 36: The α-β algorithm
	Slide 37: Evaluation functions

	Deterministic games in practice
	Slide 38: Deterministic games in practice
	Slide 39: Checkers
	Slide 40: Chess
	Slide 41: Modern Chess
	Slide 42: Go
	Slide 43
	Slide 44: Summary

