Effective
Propositional A |
Inference ez

Informatics 2D: Reasoning and Agents

Outline

Two families of efficient algorithms for propositional inference:

mmw Complete backtracking search algorithms

e DPLL algorithm (Davis, Putnam, Logemann, Loveland)

mm |ncomplete local search algorithms

o \WWalkSAT algorithm

INF2D: REASONING AND AGENTS 2

Clausal Form (CN

DPLL and WalkSAT manipulate formulae in conjunctive normal form (CNF).

|
~—~

e Formula whose satisfiability is to be determined
e Conjunction of clauses

Sentence

Clause e Disjunction of literals

Lite ral * Proposition symbol or negated proposition symbol

e.g. (4,-B), (B, () represents (AV -B)A(BV =C)

INF2D: REASONING AND AGENTS 3

Recall Logical Equivalence

(xAP)=(Prx) commutativity of A .
_ Ny Two sentences are logically
(xvP)=(Pvx) commutativity of v
(A B)AY) = (an (B AY)) associativityof o |€quivalent iff true in the same
(xvP)vy) =(axv(Ppvy) associativity of v models:
—(Cx) = « double-negation elimination
(x— B)=("p — contraposition a=B iff o = B and BEa
(x— B)=(—axv P) implication elimination
(xe—=P)=((x—= P)A (P —) biconditional elimination
(ocA[S)z (macv) de Morgan
“(xv p)=(—oxn—p) de Morgan
(xn(Pvy)=({(xaP)v(xany)) distributivity of A over v
(xv(Ppay)=((cxvP)a(xvy)) distributivity of v over A

INF2D: REASONING AND AGENTS 4

Conversion to CN

(31,1 S P,V P2,1)

Eliminate & : replace a © B with (a = BA(B = a)

* (31,1 = (P1,2 VPz,l)) A ((Pl'z VPZ»l) = B1,1)

Eliminate = : replace a = f with —aV

e (=B11 V(P2 VP21)) AN(=(Pr2VPy1)VBy1)

Move = inwards : use de Morgan’s rules and double negation =—a = «

° (—'31,1 V(P1,2 V P2,1)) A ((—'P1,2 A —'P2,1) V B1,1)

Create clauses: apply distributivity law (V over A) and flatten
* (2B1,1 VP12V Py1) N(=Pr2VBy 1) A(=P21VBy 1)

INF2D: REASONING AND AGENTS 5

DPLL

INF2D: REASONING AND AGENTS

DPLL

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:
1. Early termination
2. Pure symbol heuristic

3. Unit clause heuristic

INF2D: REASONING AND AGENTS 7

DPLL

1. Early termination

> A clause is true if one of its literals is true,
o e.g., if Aistrue then (A v —B) is true.

> A sentence is false if any of its clauses is false,
o e.g., if Alis false and B is true then

o (A v —B) is false, so any sentence containing it is false.

INF2D: REASONING AND AGENTS 8

DPLL

2. Pure symbol heuristic

» Pure symbol: always appears with the same “sign”/polarity in all clauses.
o e.g., In the three clauses (A v —B), (=B v —=C), (C v A):

o A.and B are pure, Cis impure.

» Make literal containing a pure symbol true.
o e.g., Let A and —B both be true.

INF2D: REASONING AND AGENTS 9

DPLL

3. Unit clause heuristic

» Unit clause: only one literal in the clause
o e.g. (A)

» The only literal in a unit clause must be true.

> e.g., A must be true.

> Also includes clauses where all but one literal is false,
> e.g.(A,B,C) where B and C are false since it is equivalent to (A, false, false) i.e. (A).

INF2D: REASONING AND AGENTS 10

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of s
symbols «— a list of the proposition symbols in s
return DPLL(clauses, symbols,{ })

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return {rue
if some clause in clauses is false in model then return false
P, value < FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})
P, value < FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})
P <« FIRST(symbols); rest < REST(symbols)
return DPLL(clauses, rest, model U { P=true}) or
DPLL(clauses, rest, model U { P=false}))

The DPLL
algorithm

INF2D: REASONING AND AGENTS

Tautology Deletion (Optional)

» Tautology: both a proposition and its negation in a clause.
o e.g. (A, B, 7A)

» Clause bound to be true.
o e.g., whether A is true or false.

o Therefore, can be deleted.

INF2D: REASONING AND AGENTS 12

Mid-Lecture Exercise

> Apply DPLL heuristics to the following sentence:

(52,1), (_'51,1), (_'51,2),
(_'52,1, Wz,z), (ﬂSm, Wz,z), (_'51,2, Wz,z),
(_'Wz,zl S2,1: 51,1: 51,2)

> Use case splits if model not found by the heuristics.

> SymbC)lS: 81,1 , S1,2 , 5211, W2,2

INF2D: REASONING AND AGENTS 13

Solution

Pure symbol heuristic: (S2 1)

INF2D: REASONING AND AGENTS 14

Solution

Pure symbol heuristic: (S51)
> No literal is pure.
("51,1)
Unit clause heuristic:
(=S5,2)
(m32,1, Wa,2)

INF2D: REASONING AND AGENTS 15

Solution

Pure symbol heuristic:

> No literal is pure.

Unit clause heuristic:

° S, istrue

INF2D: REASONING AND AGENTS

Solution

Pure symbol heuristic: T
> No literal is pure.
("51,1)
Unit clause heuristic:
. (=S5,2)
° S, istrue
(F, W5,)

Early termination heuristic:
o ("W, 52,1, S1,1, S1,2) is true

INF2D: REASONING AND AGENTS

Solution

Pure symbol heuristic: T
> No literal is pure.
T
Unit clause heuristic:
. (—34,2)
° S, istrue
o Sqqis false (F, W,)
Early termination heuristic: (T, W3,5)
° (W32, 52,1, 51,1, S1,.2) is true (0S5, W,)5)
T

INF2D: REASONING AND AGENTS

Solution

Pure symbol heuristic: T
> No literal is pure.
T
Unit clause heuristic: T
° S, istrue
o Sqqis false (F, W5 ,)
o Sy, is false T
Early termination heuristic: (T, W, ,)
° (W50, So1, 514, Sq2) is true T

° (_'81,1, W2,2) is true

INF2D: REASONING AND AGENTS

Solution

Pure symbol heuristic: T
> No literal is pure.

Unit clause heuristic: .
° Sy istrue
o Sy qis false

o Sq,is false T

Early termination heuristic:
° (Wo2, S21, S1.1, Sq,2) is true
° (_'81,1,\/\/2’2) is true

o (=S,q, Wy ,)is true

INF2D: REASONING AND AGENTS 20

Solution

Pure symbol heuristic:
> No literal is pure.

Unit clause heuristic:
° Sy istrue
o Sqqis false
o Sq1,is false

° W212 Is true

Early termination heuristic:
o (W55, S5, 511, 512) is true
o (=Sq4, Wy ,)is true

= s e T B B

° (_'8211, W2,2) Is true

INF2D: REASONING AND AGENTS 21

WalkSAT

INF2D: REASONING AND AGENTS

The WalkSAT algorithm

» Incomplete, local search algorithm

» Evaluation function:

> The min-conflict heuristic of minimizing the number of unsatisfied clauses

> Algorithm checks for satisfiability by randomly flipping
the values of variables

> Balance between greediness and randomness

INF2D: REASONING AND AGENTS 23

function WALKS AT (clauses, p, max _flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk™ move, typically around 0.5
maz _flips, number of flips allowed before giving up

model < a random assignment of {rue/false to the symbols in clauses
for : = 1 to maz_flips do
if model satisfies clauses then return model
clause «— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

The WalkSAT algorithm

INF2D: REASONING AND AGENTS 24

Hard satisfiability problems

» Consider random 3-CNF sentences.

o Example:

(-Dv-BvC)A(BvV-Av-C)A(-Cv -BVE)A(Ev-DvVvB)A(BVEV--C)

o m = number of clauses

n = number of symbols

» Hard problems seem to cluster near m/n = 4.3 (critical point)

INF2D: REASONING AND AGENTS 25

0.8
2 06 Hard
F o satistiability

0.2 - prOb cIms

0 | 2 3 4 5 6 7 8

Clause/symbol ratio m/n

INF2D: REASONING AND AGENTS 26

2000
1800 { DPLL —+—
1600 { WalkSAT ---x--- ¢
1400 -
1200 -
1000 -
300 1
600 -
400 -
200 -

Hard
satisfiability
oroblems

Runtime

' y ' T y ' Median runtime for 100
0 1 2 3 4 5 6 7 8 satisfiable random 3-CNF

Clause/symbol ratio m/n sentences, n = 50

INF2D: REASONING AND AGENTS 27

Interence in the Wumpus World

Inference-based agents in the
wumpus world

» A wumpus-world agent using propositional logic:

° =Py
o W, 4
° Byy & (Px,y+1 VPV Puy v Px_w) PP?\ OK
° Sx,y < (Wx,y+1 Vv Wx,y—’l Vv Wx+1,y Vv WX-1,y) 3 \
c Wi i vW v vWy, - i’i -y
o =Wy v =W, 2 A l_?o A
o =W, ;v =W, A :

' ' [yok]s [ox

| W= | W
> 64 distinct proposition symbols, 155 sentences 1 - - -

INF2D: REASONING AND AGENTS 29

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

TELL the KB the temporal “physics” sentences for time ¢
safe — {|z,y] : ASK(KB, OK;,y) = true} T h e
if ASK(KB, Glitter') = true then

plan «— [Grab] + PLAN-ROUTE(current, {[1,1]}, safe) + [Climb]

if plan is empty then \/\/

unvisited — {|z,y] : ASK(KB, Lgy) = false forall ¢’ < t} u I I p u S
plan <« PLAN-ROUTE(current, unvisited M safe, safe)

if plan is empty and ASK (KB, HaveArrow") = true then

possible_wumpus — {[z,y] : ASK(KB,—~ W, ,) = false} A 9 e P
plan < PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe < {[x,y] : ASK(KB, - OKfc‘y) = false}
plan < PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is empty then
plan «— PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb)]
action «— POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1
return action

INF2D: REASONING AND AGENTS 30

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem <— ROUTE-PROBLEM(current, goals,allowed)
return A*-GRAPH-SEARCH(problem)

INF2D: REASONING AND AGENTS

The
VWum

Ager

OUS

31

We need more!

Effect axioms
L3 1 A FacingEast® A Forward® = Ly, A =L,

We need extra axioms about the world.

Frame problem! - representational & inferential

Frame axioms:

Forward® = (HaveArrow! & HaveArrow!*?)

Forwardt = (WumpusAlive & WumpusAlivett?)

Successor-state axioms:
HaveArrow't! o (HaveArrow® A -=Shoot?)

INF2D: REASONING AND AGENTS 32

—xpressiveness limitation of
oropositional logic

> KB contains "physics" sentences for every single square.

» For every time t and every location [x,y],

L, , A FacingRight' A Forward® = %1, |

» Rapid proliferation of clauses!

INF2D: REASONING AND AGENTS 33

Why?

» Fundamentals behind SAT/SMT solvers.

» Highly specialised and optimised tools.

o Capable of solving problems with thousands of propositions and millions of
constraints, despite NP-completeness and exponential algorithms!

> Close relation to CSPs and optimization problem:s.

> Very large array of applications, e.g.:

o Circuit routing and testing, automatic test generation, formal verification, planning
& scheduling, configuration/customisation, etc.

INF2D: REASONING AND AGENTS 34

	Default Section
	Slide 1: Effective Propositional Inference
	Slide 2: Outline
	Slide 3: Clausal Form (CNF)
	Slide 4: ` Recall Logical Equivalence
	Slide 5: Conversion to CNF

	DPLL
	Slide 6: DPLL
	Slide 7: The DPLL algorithm
	Slide 8: Early termination
	Slide 9: 2. Pure symbol heuristic
	Slide 10: 3. Unit clause heuristic
	Slide 11: The DPLL algorithm
	Slide 12: Tautology Deletion (Optional)
	Slide 13: Mid-Lecture Exercise
	Slide 14: Solution
	Slide 15: Solution
	Slide 16: Solution
	Slide 17: Solution
	Slide 18: Solution
	Slide 19: Solution
	Slide 20: Solution
	Slide 21: Solution

	WalkSAT
	Slide 22: WalkSAT
	Slide 23: The WalkSAT algorithm
	Slide 24: The WalkSAT algorithm
	Slide 25: Hard satisfiability problems
	Slide 26: Hard satisfiability problems
	Slide 27: Hard satisfiability problems

	Inference in the Wumpus World
	Slide 28: Inference in the Wumpus World
	Slide 29: Inference-based agents in the wumpus world
	Slide 30
	Slide 31
	Slide 32: We need more!
	Slide 33: Expressiveness limitation of propositional logic
	Slide 34: Why?

