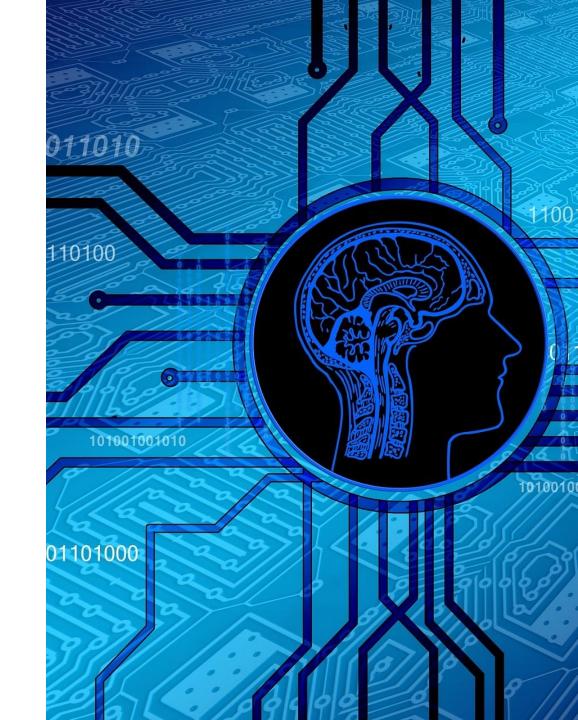
First-order Logic

Informatics 2D: Reasoning and Agents



Pros and cons of Propositional Logic

- ✓ Declarative
- ✓ Partial/disjunctive/negated information
 - (unlike most data structures and databases!)
- ✓ Compositional

 The meaning of $B_{1,1} \wedge P_{1,2}$ is derived from that of $B_{1,1}$ and of $P_{1,2}$

- (x) Meaning is context-independent
 - (unlike natural language, where meaning depends on context)
- × Very limited expressive power
 - (unlike natural language)
 - for example, we cannot say "pits cause breezes in adjacent squares", except by writing one sentence for each square

First-order logic (FOL)

- Propositional logic assumes the world contains atomic facts.
 - Non-structured propositional symbols, usually finitely many.
- > FOL assumes the world contains:

Objects

• people, houses, numbers, colours, football games, wars, ...

Relations

• red, round, prime, brother of, bigger than, part of, comes between, ...

Functions

• father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

Constants • KingJohn, 2, UoE,... **Predicates** • Brother, >,... **Functions** • Sqrt, LeftLegOf,... **Variables** • x, y, a, b,... Connectives $|\neg,\Rightarrow,\wedge,\overline{\vee,}\Leftrightarrow$ Equality Quantifiers

Syntax of FOL: Basic elements

Arity! Constants • KingJohn/0, 2 /0, UoE /0, ... **Predicates** • Brother/2, >/2, ... **Functions** • Sqrt/1, LeftLegOf/1, +/2, ... **Variables** • x, y, a, b, ... Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow Equality Quantifiers

Atomic formulae


```
Atomic formula = predicate (term_1,...,term_n)
or term_1 = term_2
```

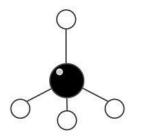
Term = $function (term_1,...,term_n)$ or constant or variable

Examples:

Brother(KingJohn, Richard)

o >(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex formulae



Complex formulae are made from atomic formulae using connectives

$$\neg P$$

$$P \wedge Q$$

$$P \vee Q$$

$$\neg P \quad P \land Q \qquad P \lor Q \qquad P \Rightarrow Q \qquad P \Leftrightarrow Q$$

$$P \Leftrightarrow Q$$

Examples:

 $Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn)$

$$>(1,2) \lor \le (1,2)$$

Semantics of first-order logic

Formulae are mapped to an interpretation.

An interpretation is called a model of a set of formulae when all the formulae are **true** in the interpretation.

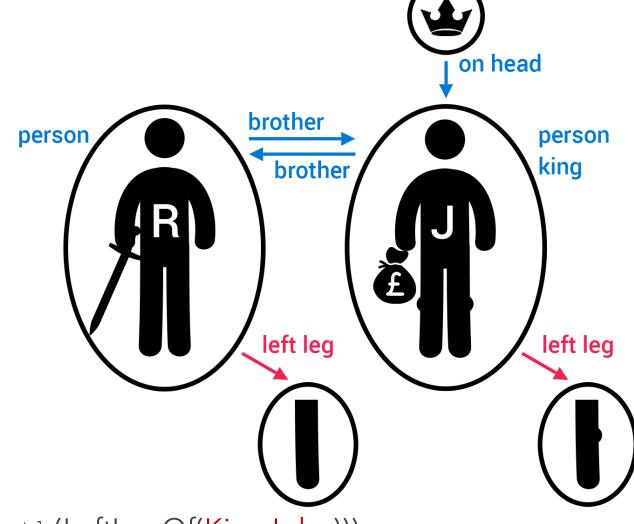
Semantics of first-order logic

An interpretation contains objects (domain elements) and relations between them. Mapping is as follows:

```
constant symbols \mapsto objects predicate symbols \mapsto relation function symbols \mapsto functions
```

➤ An atomic formula predicate(term₁,...,term_n) is **true** iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate.

Interpretations for FOL: Example



crown

Brother(KingJohn, Richard)

>(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Universal quantification

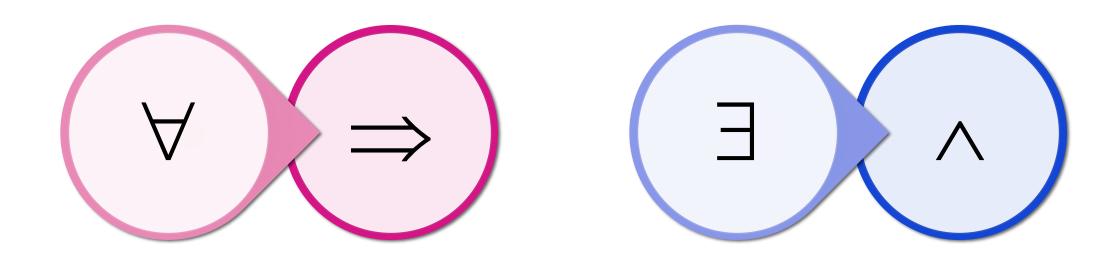
∀<variables>. <formula>

- But will often write $\forall x,y.P$ for $\forall x. \forall y.P$
- Example: Everyone at UoE is smart: $\forall x$. At(x, UoE) \Rightarrow Smart(x)
- $\triangleright \forall x. P$ is true in an interpretation m iff P is true with x being **each** possible object in the interpretation.
- ightharpoonup Roughly speaking, equivalent to the conjunction of instantiations of P At(KingJohn, UoE) \Rightarrow Smart(KingJohn)
 - \land At(Richard, UoE) \Rightarrow Smart(Richard)
 - \land At(UoE, UoE) \Rightarrow Smart(UoE) \land ...

∃<variables>. <formula>

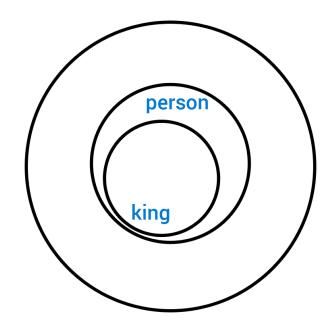
- But will often write $\exists x,y.P$ for $\exists x.\exists y.P$
- Example: Someone at UoE is smart: $\exists x. At(x, UoE) \land Smart(x)$
- $\triangleright \exists x. P$ is true in an interpretation m iff P is true with x being **some** possible object in the interpretation.
- ➤ Roughly speaking, equivalent to the disjunction of instantiations of *P* At(KingJohn, UoE) ∧ Smart(KingJohn)
 - ∨ At(Richard, UoE) ∧ Smart(Richard)
 - ∨ At(UoE, UoE) ∧ Smart(UoE) ∨ ...

Rule of thumb

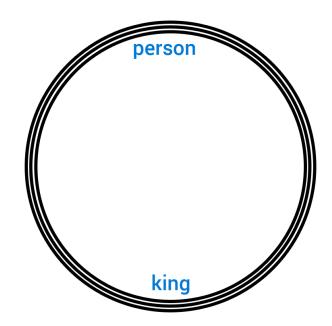


Common mistakes

 $\forall x$. King(x) \Rightarrow Person(x)

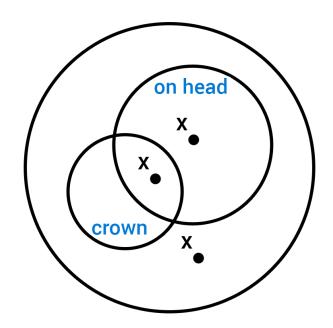


 $\forall x$. King(x) \land Person(x)

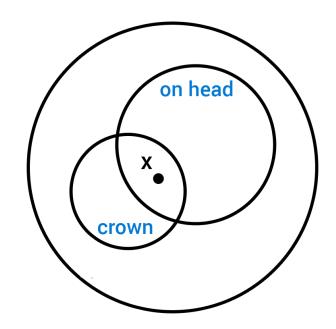


Common mistakes

 $\exists x. \operatorname{Crown}(x) \Rightarrow \operatorname{OnHead}(x, John)$



 $\exists x$. Crown(x) \land OnHead(x, John)



Properties of quantifiers

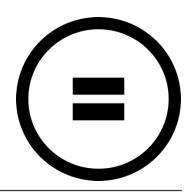
 $\triangleright \forall x. \forall y.$ is the same as $\forall y. \forall x.$

 $\exists x.\exists y.$ is the same as $\exists y.\exists x.$

- $ightharpoonup \exists x. \forall y. \text{ is } \mathbf{not} \text{ the same as } \forall y. \exists x.$
 - $\exists x. \forall y. \text{Loves}(x, y) : \text{``There is a person who loves everyone in the world'}$
 - $\lor \forall y. \exists x. \text{ Loves}(x, y) : "Everyone in the world is loved by at least one person"$

- > Quantifier duality: each can be expressed using the other:
 - $\forall x$. Likes(x, IceCream) $\equiv \neg \exists x$. \neg Likes(x, IceCream)
 - $\exists x$. Likes(x, Broccoli) $\equiv \neg \forall x$. \neg Likes(x, Broccoli)

Equality



- > $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.
- Example: Definition of *Sibling* in terms of *Parent*:

$$\forall x, y. \ Sibling(x, y) \Leftrightarrow (\neg(x = y) \land \neg(x = y)) \land \neg(x = y) \land \neg(x$$

$$\exists m, f. \neg (m = f) \land$$

 $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)$

Example: Kinship domain

Brothers are siblings.

• $\forall x, y$. Brother $(x, y) \Rightarrow Sibling(x, y)$

One's mother is one's female parent.

• $\forall m, c. Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m, c))$

"Sibling" is symmetric.

• $\forall x, y$. Sibling $(x, y) \Leftrightarrow$ Sibling(y, x)

"Parent" and "Child" are inverse relations.

• $\forall x, y. Parent(x, y) \Leftrightarrow Child(y, x)$

Example: Set domain

$$\forall s. Set(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2. Set(s_2) \land s = \{x | s_2\})$$

$$\neg \exists x,s. \{x \mid s\} = \{\}$$

$$\forall x, s. \ x \in s \Leftrightarrow s = \{x | s\}$$

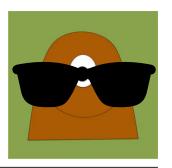
$$\forall x, s. \ x \in s \Leftrightarrow [\exists y, s_2, (s = \{y | s_2\} \land (x = y \lor x \in s_2))]$$

$$\forall s_1, s_2, s_1 \subseteq s_2 \Leftrightarrow (\forall x. x \in s_1 \Rightarrow x \in s_2)$$

$$\forall s_1, s_2, (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1)$$

$$\forall x, s_1, s_2, x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2)$$

$$\forall x, s_1, s_2, x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2)$$



Suppose a Wumpus-world agent using a FOL KB perceives: a smell and a breeze (but no glitter) at t=5:

Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, \exists a. BestAction(a, 5))

i.e., does the KB entail some best action at t=5?

Substitution

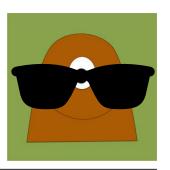
- \triangleright Given a sentence S and a substitution σ ,
 - \circ So denotes the result of "plugging" o into S; e.g.,

```
S = Smarter(x, y)

\sigma = \{x/Agent_1, y/Wumpus_1\}
```

 $S_{\sigma} = Smarter(Agent_1, Wumpus_1)$

ightharpoonup Ask(KB, S) returns some/all σ such that KB \models S σ

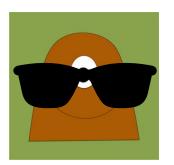


Suppose a Wumpus-world agent using a FOL KB perceives: a smell and a breeze (but no glitter) at t=5:

```
Tell(KB, Percept( [Smell, Breeze, None], 5))
Ask(KB, \existsa. BestAction(a, 5))
```

i.e., does the KB entail some best action at t=5?

Answer: Yes, $\{a/Shoot\} \leftarrow \text{substitution (binding list)}$

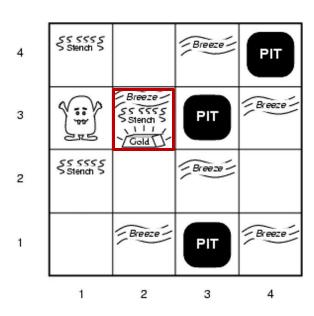


Perception

 $\forall t, s, b$. Percept([s, b, Glitter], t) \Rightarrow Glitter(t)

Reflex

 $\forall t. Glitter(t) \Rightarrow BestAction(Grab, t)$



Deducing hidden properties

```
ightharpoonup \forall x, y, a, b. Adjacent([x, y], [a, b]) \Leftrightarrow [a, b] \in \{ [x+1, y], [x-1, y], [x, y+1], [x, y-1] \}
\forall s, t. At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)
```

- > Squares are breezy near a pit:
 - ∘ Diagnostic rule: infer cause from effect $\forall s. \text{ Breezy}(s) \Rightarrow \exists r. \text{ Adjacent}(r, s) \land \text{Pit}(r)$
 - Causal rule: infer effect from cause $\forall r$. Pit $(r) \Rightarrow (\forall s$. Adjacent $(r, s) \Rightarrow Breezy(s)$)

Why?

- Universal ontology language.
 - e.g., databases, semantic web, knowledge graphs
- > At the core of:
 - programming language semantics and type theory.
 - formal verification and advanced (> propositional) automated reasoning.
 - theorem proving, including in mathematics, physics, cryptography, and beyond.
 - logic programming and its derivations, expert systems, rule-based systems.
- > Renewed interest in the context of explainable AI (XAI) and the "third-wave of AI".

Phil Wadler "What does logic have to do with Java?" 2009