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Propositional vs First-Order Inference

➢ So far, we know how to formulate simple inference rules in FOL.

➢ Goal: Enabling first-order inference

➢ Idea:

o Convert the KB to propositional logic and use propositional inference

➢ Better idea:

o Use inference methods to work with first-order sentences directly
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Universal instantiation (UI)

INF2D: REASONING AND AGENTS 3

➢ Infer any sentence by substituting a ground term for the variable

Inference Rules for 
Quantifiers



Existential instantiation (EI)
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➢ Replace the variable by a single new constant symbol

Inference Rules for 
Quantifiers



Inferential Equivalence

➢UI can be applied many times to produce many different outcomes

➢ EI can be applied once, then the existentially quantified sentence 

could be discarded.

➢ The new knowledge base (KB') is inferentially equivalent to the old KB
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Inference Rules for 
Quantifiers



Reduction to propositional inference

➢ Suppose the KB contains just the following:

x. King(x)  Greedy(x)  Evil(x) King(John) Greedy(John) Brother(Richard, John)

➢ Instantiating the universal sentence in all possible ways, we have:

◦ King(John)  Greedy(John)  Evil(John)

◦ King(Richard)  Greedy(Richard)  Evil(Richard)

◦ King(John)

◦ Greedy(John)

◦ Brother(Richard, John)
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Inference Rules for 
Quantifiers

Reduction to 
Propositional Inference



Reduction to propositional inference

➢ Suppose the KB contains just the following:

x. King(x)  Greedy(x)  Evil(x) King(John) Greedy(John) Brother(Richard, John)

➢ Instantiating the universal sentence in all possible ways, we have:

◦ King(John)  Greedy(John)  Evil(John)

◦ King(Richard)  Greedy(Richard)  Evil(Richard)

◦ King(John)

◦ Greedy(John)

◦ Brother(Richard, John)
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Inference Rules for 
Quantifiers

Reduction to 
Propositional Inference

KB': The new KB will 
then include extra 
propositional symbols



Propositionalization

➢ Every FOL KB can be propositionalized so as to preserve entailment
◦ A ground sentence is entailed by new KB iff entailed by original KB

➢ Idea: propositionalize KB and query, apply DPLL (or some other 
complete propositional method), return result

➢ Problem: with function symbols, there are infinitely many ground terms,
◦ e.g., Father(Father(Father(John)))
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Inference Rules for 
Quantifiers

Reduction to 
Propositional Inference
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Idea: For n = 0 to ∞ do
◦ create a propositional KB by instantiating with depth-n terms

◦ see if α is entailed by this KB

Problem: works if α is entailed, loops forever if α is not entailed

• If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the 
propositionalized KB

Theorem: Herbrand (1930)

• Entailment for FOL is semi-decidable 
(i.e., algorithms exist that say yes to every entailed sentence, but no algorithm 
exists that also says no to every non-entailed sentence.)

Theorem: Turing (1936), Church (1936). 

Inference Rules for 
Quantifiers

Reduction to 
Propositional Inference



Problems with Propositionalization

x. King(x)  Greedy(x)  Evil(x) King(John)

 y. Greedy(y) Brother(Richard,John)

◦ It seems obvious that Evil(John), but propositionalization produces lots of facts such as 

Greedy(Richard) that are irrelevant.

➢ With p k-ary predicates and n constants, there are p·nk instantiations.

➢ We want to find a substitution both for the variables in the implication 

sentence and for the variables in the sentences in the KB (e.g., x/John, y/John).

INF2D: REASONING AND AGENTS 10

A first-order 
inference rule



Modus Ponens (Propositional Logic)

Latin for “method of putting by placing” – “way that affirms by affirming”

𝑃 𝑃 ⟹ 𝑄

𝑄

𝑃, 𝑃 ⟹ 𝑄 ⊢ 𝑄
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A first-order 
inference rule

(Generalized) 
Modus Ponens



Generalized Modus Ponens (GMP)
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A first-order 
inference rule

Generalized 
Modus Ponens

KB Applying GMP to KB

➢ GMP is a sound inference rule.



Unification
MAKE DIFFERENT LOGICAL EXPRESSIONS LOOK IDENTICAL
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Unification
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➢ The UNIFY algorithm takes two sentences and returns a unifier for 

them if one exists.



Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane)

Knows(John, x) Knows(y, OJ)

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)
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Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ)

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)
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Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)
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Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard)
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Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard) Fail!
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Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard) Fail!
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Standardizing variables apart eliminates overlap of variables

e.g. change Knows(x, Richard) to Knows(z17, Richard) and then we succeed the last case with 

𝜃 = {z17/John, x/Richard}



Most General Unifier (MGU)

Unifying Knows(John, x) and Knows(y, z)

𝜃 = {y/John, x/z}    or    𝜃 = {y/John, x/John, z/John}

The first unifier is more general than the second.

FOL: There is a single most general unifier (MGU) that is unique up to renaming of 
variables.

MGU = {y/John, x/z}

Can be viewed as an equation solving problem.

◦ i.e. solve Knows(John, x) ≟ Knows(y, z)
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MGU Examples
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MGU

Loves(John, x) ≟ Loves(y, Mother(y))

Loves(John, Mother(y)) ≟ Loves(y, y)



MGU Examples
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MGU

Loves(John, x) ≟ Loves(y, Mother(y)) {x/Mother(John), y/John}

Loves(John, Mother(y)) ≟ Loves(y, y)



MGU Examples
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MGU

Loves(John, x) ≟ Loves(y, Mother(y)) {x/Mother(John), y/John}

Loves(John, Mother(y)) ≟ Loves(y, y) Fail!



Finding the MGU 

Can be broken-down into a series of steps
◦ Decomposition

◦ Conflict

◦ Eliminate

◦ Delete

◦ Switch

◦ Coalesce

◦ Occurs Check

Other presentations of algorithm are possible (see R&N)
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Decomposition
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Replace with

s1 ≟ t1, …, sn ≟ tn

Given

f(s1, …, sn) ≟ f(t1, …, tn)

Replace with

John ≟ y,   x ≟ z

Given

Knows(John, x) ≟ Knows(y, z)

Example



Conflict
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Fail!

Given

f(s1, …, sn) ≟ g(t1, …, tn) where f≠g

fail

Given

Knows(John, x) ≟ Greedy(y)

Example



Eliminate
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Replace with

P{x/t} and x ≟ t

Given

P,   x ≟ t where x occurs in P but not in t, and t is not a variable

Replace with

Knows(John, x) ≟ Knows(y, Richard),   z ≟ Richard

Given

Knows(John, x) ≟ Knows(y, z),   z ≟ Richard

Example



Delete
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Replace with

P

Given

P,  s ≟ s

Replace with

z ≟ Richard

Given

z ≟ Richard,   Greedy(John) ≟ Greedy(John)

Example



Switch
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Example

Replace with

P and x ≟ s

Given

P,  s ≟ x where x is a variable and s is not

Replace with

Knows(John, x) ≟ Knows(y, z),   z ≟ Richard

Given

Knows(John, x) ≟ Knows(y, z),   Richard ≟ z



Coalesce
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Example

Replace with

P{x/y} and x ≟ y

Given

P,  x ≟ y where x, y variables occurring in P

Replace with

Knows(John, x) ≟ Knows(z, z),   y ≟ z

Given

Knows(John, x) ≟ Knows(y, z),   y ≟ z



Occurs Check
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Example

Fail!

Given

x ≟ s where x occurs in s and s not a variable

Fail (else Eliminate will loop)

Given

P(x),   x ≟ Father(x)

P(Father(Father(Father(…))))



Example
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Eliminate

y ≟ John,  x ≟ Mother(John)

Switch

y ≟ John,  x ≟ Mother(y)

Decompose

John ≟ y,  x ≟ Mother(y)

Loves(John, x) ≟ Loves(y, Mother(y))



DIY (MGU)

• P(x,A) =?= P(f(y),y)

• P(x,g(x)) =?= P(f(y),y)
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New 
Example 
KB
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Example Knowledge Base

It is known in The Hundred-Acre 
Wood that if someone who is very 
fond of food gives a treat to one of 
their friends, they are really generous.

Eeyore, the sad donkey, has some 
hunny that he has received for his 
birthday from Winnie-the-Pooh, who, 
as we know, is very fond of food.

Prove that Winnie-the-Pooh is 
generous.
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Formalisation
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if someone who is very fond of food gives a treat to one of their friends, they 
are really generous

• 𝑉𝑒𝑟𝑦𝐹𝑜𝑛𝑑𝑂𝑓𝐹𝑜𝑜𝑑 𝑥 ∧ 𝑇𝑟𝑒𝑎𝑡 𝑦 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑 𝑧 ∧ 𝐺𝑖𝑣𝑒𝑠 𝑥, 𝑦, 𝑧 ⇒
𝐺𝑒𝑛𝑒𝑟𝑜𝑢𝑠(𝑥)

Eeyore (…) has some hunny

• ∃𝑥. 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝑥 ∧ 𝐻𝑢𝑛𝑛𝑦 𝑥   or after EI: 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝐻1 ∧
𝐻𝑢𝑛𝑛𝑦 𝐻1    

that he has received for his birthday from Winnie-the-Pooh

• 𝐻𝑢𝑛𝑛𝑦 𝑥 ∧ 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝑥 ⇒ 𝐺𝑖𝑣𝑒𝑠(𝑃𝑜𝑜ℎ, 𝑥, 𝐸𝑒𝑦𝑜𝑟𝑒)

Hunny is a treat.

• 𝐻𝑢𝑛𝑛𝑦 𝑥 ⇒ 𝑇𝑟𝑒𝑎𝑡(𝑥)

Residents of the the Hundred-Acre Wood are friends.

• 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑥, 𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝐴𝑐𝑟𝑒𝑊𝑜𝑜𝑑 ⇒ 𝐹𝑟𝑖𝑒𝑛𝑑(𝑥)

Eeyore is a resident of the the Hundred-Acre Wood.

• 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝐸𝑒𝑦𝑜𝑟𝑒, 𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝐴𝑐𝑟𝑒𝑊𝑜𝑜𝑑)

Pooh is very fond of food.

• 𝑉𝑒𝑟𝑦𝐹𝑜𝑛𝑑𝑂𝑓𝐹𝑜𝑜𝑑(𝑃𝑜𝑜ℎ)



Why?

➢ Setting the scene for inference & resolution.

➢ Linked to logic programming.

 

 …but more in the next lecture!
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