Unification &
Generaliseo .
Modus Ponens E&===W

Informatics 2D: Reasoning and Agents

Propositional vs First-Order Inference

» So far, we know how to formulate simple inference rules in FOL.

» Goal: Enabling first-order inference

> |dea:

o Convert the KB to propositional logic and use propositional inference

> Better idea:

o Use inference methods to work with first-order sentences directly

INF2D: REASONING AND AGENTS 2

Inference Rules for
Quantifiers

Universal instantiation (UI)

> Infer any sentence by substituting a ground term for the variable

Vv a

SUBST({v/g},) I

Example: Vx. King(x) A Greedy(x) = Evil(x) yields:

o King(John) A Greedy(John)= Evil(John)
o King(Richard) A Greedy(Richard)= Evil(Richard)
o King(Father(John)) A Greedy(Father(John))= Evil(Father(John))

INF2D: REASONING AND AGENTS 3

Inference Rules for
Quantifiers

~xistential instantiation (El)

> Replace the variable by a single new constant symbol

dv

SUBST({v/k},) |

Example. 3x. Crown(x) A OnHead(x,John) vyields:

o Crown(C;) A OnHead(C,,John)

provided C; is a new constant symbol, called a Skolem constant

INF2D: REASONING AND AGENTS 4

Inference Rules for
Quantifiers

Interential Equivalence

> Ul can be applied many times to produce many different outcomes

> El can be applied once, then the existentially quantified sentence
could be discarded.

» The new knowledge base (KB') is inferentially equivalent to the old KB

INF2D: REASONING AND AGENTS S

Inference Rules for Reduction to
Quantifiers Propositional Inference

Reduction to propositional inference

» Suppose the KB contains just the following:

vx. King(x) A Greedy(x) = Evil(x) King(John) Greedy(John) Brother(Richard, John)

» Instantiating the universal sentence in all possible ways, we have:
o King(John) A Greedy(John) = Evil(John)
o King(Richard) A Greedy(Richard) = Evil(Richard)
o King(John)
o Greedy(John)
o Brother(Richard, John)

INF2D: REASONING AND AGENTS 6

Inference Rules for Reduction to
Quantifiers Propositional Inference

Reduction to propositional inference

» Suppose the KB contains just the following:

vx. King(x) A Greedy(x) = Evil(x) King(John) Greedy(John) Brother(Richard, John)

» Instantiating the universal sentence in all possible ways, we have:
o King(John) A Greedy(John) = Evil(John)
o King(Richard) n Greedy(Richard) = Evil(Richard) KB': The new KB will

—_

o King(John) — theninclude extra
propositional symbols

o Greedy(John)
o Brother(Richard, John) —

INF2D: REASONING AND AGENTS 7

Inference Rules for Reduction to
Quantifiers Propositional Inference

Propositionalization

» Every FOL KB can be propositionalized so as to preserve entailment
o A ground sentence is entailed by new KB iff entailed by original KB

» |dea: propositionalize KB and query, apply DPLL (or some other
complete propositional method), return result

» Problem: with function symbols, there are infinitely many ground terms,
o e.g., Father(Father(Father(John)))

INF2D: REASONING AND AGENTS 8

Inference Rules for Reduction to
Quantifiers Propositional Inference
e | heorem: Herbrand (1930)

e |f a sentence a is entailed by a FOL KB, itis entailed by a finite subset of the
propositionalized KB

Idea: Forn = 0to « do
o create a propositional KB by instantiating with depth-n terms
o see if ais entailed by this KB

Problem: works if a is entailed, loops forever if a is not entailed

Theorem: Turing (1936), Church (1936).

e Entailment for FOL is semi-decidable
(i.e., algorithms exist that say yes to every entailed sentence, but no algorithm
exists that also says no to every non-entailed sentence.)

INF2D: REASONING AND AGENTS 9

A first-order
inference rule

Problems with Propositionalization

Vx. King(x) A Greedy(x) = Evil(x) King(John)
Vy. Greedy(y) Brother(Richard,John)

o |t seems obvious that Evil(John), but propositionalization produces lots of facts such as
Greedy(Richard) that are irrelevant.

» With p k-ary predicates and n constants, there are p-n¥ instantiations.

» We want to find a substitution both for the variables in the implication
sentence and for the variables in the sentences in the KB (e.g., x/John, y/John).

INF2D: REASONING AND AGENTS 10

A first-order (Generalized)
inference rule Modus Ponens

Modus Ponens (Propositional Logic)

Latin for “method of putting by placing” - “way that affirms by affirming”

P P=0Q
Q

P, P=0Q +0Q

INF2D: REASONING AND AGENTS 1

inference rule Modus Ponens
Generalized Modus Ponens (GMP)

such that SUBST(#, p;') = SUBST(0, p;), for all 7,

p', p2's ..., pa/s (PLAP2A.. APy =q)
SUBST(#, q)
KB Applying GMP to KB
Vz King(z) A Greedy(z) = Evil(z) p1’ is King(John) p1 is King(x)
King(John)

po’ is Greedy(y) po is Greedy(x)
Yy Greedy(y) 0 is {x/John,y/John} q is Evil(x)
SUBST(#, q) is Fuvil(John)

» GMP is a sound inference rule.

INF2D: REASONING AND AGENTS

Unification

MAKE DIFFERENT LOGICAL EXPRESSIONS LOOK IDENTICAL

Unification

» The UNIFY algorithm takes two sentences and returns a unifier for
them if one exists.

UNIFY (p, q) = 0 where SUBST(f, p) = SUBST(0, q)

INF2D: REASONING AND AGENTS 14

Unification examples
I Y N T

Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y, OJ)
Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 15

Unification examples
I Y N T

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ)
Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 16

Unification examples
I Y N T

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 17

Unification examples
I Y N T

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 18

Unification examples
I Y N T

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard) Fail!

INF2D: REASONING AND AGENTS 19

Unification examples

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, Richard) Fail!

N\

-

Standardizing variables apart eliminates overlap of variables

e.g. change Knows(x, Richard) to Knows(z;,, Richard) and then we succeed the last case with
0 ={z,,/John, x/Richard}

J

INF2D: REASONING AND AGENTS 20

Most General Unitier (MGU)

Unifying Knows(John, x) and Knows(y, z)

0 ={y/John, x/z} or 6 ={y/John, x/John, z/John}

The first unifier is more general than the second.

FOL: There is a single most general unifier (MGU) that is unique up to renaming of
variables.

MGU = {y/John, x/z}

Can be viewed as an equation solving problem.
o j.e. solve Knows(John, x) £ Knows(y, z)

INF2D: REASONING AND AGENTS 21

MGU Examples
I Y T

Loves(John, x) £ Loves(y, Mother(y))

Loves(John, Mother(y)) £ Loves(y, y)

INF2D: REASONING AND AGENTS 22

MGU Examples
| meu

Loves(John, x) £ Loves(y, Mother(y)) {x’Mother(John), y/John}
Loves(John, Mother(y)) £ Loves(y, y)

INF2D: REASONING AND AGENTS 23

MGU Examples
| meu

Loves(John, x) £ Loves(y, Mother(y)) {x’Mother(John), y/John}
Loves(John, Mother(y)) £ Loves(y, y) Faill

INF2D: REASONING AND AGENTS 24

-inding the MGU

Can be broken-down into a series of steps
o Decomposition

o Conflict
o Eliminate
o Delete

o Switch

o Coalesce
o Occurs Check

Other presentations of algorithm are possible (see R&N)

INF2D: REASONING AND AGENTS 25

Replace with

S1 ét'], S o S étn

Decomposition

Example

Knows(John, x) £ Knows(y, z)

A 4

Replace with

John £y, x£z

INF2D: REASONING AND AGENTS 26

Faill .
Conflict

Example

Knows(John, x) £ Greedy(y)

A 4
e

fail

INF2D: REASONING AND AGENTS 27

Replace with

P{x/t} and x =t

Eliminate

Example

Knows(John, x) £ Knows(y, z), z £ Richard

A 4

Replace with

Knows(John, x) £ Knows(y, Richard), z £ Richard

INF2D: REASONING AND AGENTS 28

Replace with

Delete

Example

z £ Richard, Greedy(John) £ Greedy(John)

A 4

Replace with

z = Richard

INF2D: REASONING AND AGENTS 29

Replace with

Pandx *s

Switch

Example

Knows(John, x) £ Knows(y, z), Richard £ z

A 4

Replace with

Knows(John, x) £ Knows(y, z), z £ Richard

INF2D: REASONING AND AGENTS 30

Replace with

P{x/y}and x £ y

Coalesce

Example

Knows(John, x) £ Knows(y, z), y £z

A 4

Replace with

Knows(John, x) £ Knows(z,z), y £z

INF2D: REASONING AND AGENTS 31

Fail!

Occurs Check

Example

Given

P(x), x = Father(x)

’ P(Father(Father(Father(...))))

Fail (else Eliminate will loop)

INF2D: REASONING AND AGENTS

—xample

Loves(John, x) £ Loves(y, Mother(y))

Decompose

John £y, x £ Mother(y)

Switch

y = John, x £ Mother(y)

Eliminate

y = John, x £ Mother(John)

- 1 DIY (MGU)

* P(x,A) =7= P(t(y),y)

* P(x,g(x)) =7= P({(y).y)

-
s

INF2D: REASONING AND AGENTS

34

INF2D: REASONING AND AGENTS 35

—xample Knowledge Base

It is known in The Hundred-Acre
Wood that if someone who is very
fond of food gives a treat to one of
their friends, they are really generous.

Eeyore, the sad donkey, has some
hunny that he has received for his
birthday from Winnie-the-Pooh, who,
as we know, is very fond of food.

Prove that Winnie-the-Pooh is
generous.

INF2D: REASONING AND AGENTS 36

—ormalisation

INF2D: REASONING AND AGENTS

if someone who is very fond of food gives a treat to one of their friends, they
are really generous

e VeryFondOfFood(x) A Treat(y) A Friend(z) A Gives(x,y,z) =
Generous(x)

Eeyore (...) has some hunny

e 3x.Owns(Eeyore, x) A Hunny(x) or after El: Owns(Eeyore, Hy) A
Hunny(H;)

that he has received for his birthday from Winnie-the-Pooh

e Hunny(x) A Owns(Eeyore,x) = Gives(Pooh, x, Eeyore)

Hunny is a treat.

e Hunny(x) = Treat(x)

Residents of the the Hundred-Acre Wood are friends.

e Resident(x, HundredAcreWood) = Friend(x)

Eeyore is a resident of the the Hundred-Acre Wood.

e Resident(Eeyore, HundredAcreWood)

Pooh is very fond of food.

eVeryFondOfFood(Pooh

Why?

» Setting the scene for inference & resolution.

» Linked to logic programming.

...but more in the next lecture!

INF2D: REASONING AND AGENTS 38

	Default Section
	Slide 1: Unification & Generalised Modus Ponens
	Slide 2: Propositional vs First-Order Inference
	Slide 3: Universal instantiation (UI)
	Slide 4: Existential instantiation (EI)
	Slide 5: Inferential Equivalence
	Slide 6: Reduction to propositional inference
	Slide 7: Reduction to propositional inference
	Slide 8: Propositionalization
	Slide 9

	Unification
	Slide 10: Problems with Propositionalization
	Slide 11: Modus Ponens (Propositional Logic)
	Slide 12: Generalized Modus Ponens (GMP)
	Slide 13: Unification
	Slide 14: Unification
	Slide 15: Unification examples
	Slide 16: Unification examples
	Slide 17: Unification examples
	Slide 18: Unification examples
	Slide 19: Unification examples
	Slide 20: Unification examples
	Slide 21: Most General Unifier (MGU)
	Slide 22: MGU Examples
	Slide 23: MGU Examples
	Slide 24: MGU Examples
	Slide 25: Finding the MGU
	Slide 26: Decomposition
	Slide 27: Conflict
	Slide 28: Eliminate
	Slide 29: Delete
	Slide 30: Switch
	Slide 31: Coalesce
	Slide 32: Occurs Check
	Slide 33: Example
	Slide 34: DIY (MGU)

	New example KB
	Slide 35: New Example KB
	Slide 36: Example Knowledge Base
	Slide 37: Formalisation
	Slide 38: Why?

