
Unification &
Generalised
Modus Ponens

INF2D: REASONING AND AGENTS

Informatics 2D: Reasoning and Agents

Propositional vs First-Order Inference

➢ So far, we know how to formulate simple inference rules in FOL.

➢ Goal: Enabling first-order inference

➢ Idea:

o Convert the KB to propositional logic and use propositional inference

➢ Better idea:

o Use inference methods to work with first-order sentences directly

INF2D: REASONING AND AGENTS 2

Universal instantiation (UI)

INF2D: REASONING AND AGENTS 3

➢ Infer any sentence by substituting a ground term for the variable

Inference Rules for
Quantifiers

Existential instantiation (EI)

INF2D: REASONING AND AGENTS 4

➢ Replace the variable by a single new constant symbol

Inference Rules for
Quantifiers

Inferential Equivalence

➢UI can be applied many times to produce many different outcomes

➢ EI can be applied once, then the existentially quantified sentence

could be discarded.

➢ The new knowledge base (KB') is inferentially equivalent to the old KB

INF2D: REASONING AND AGENTS 5

Inference Rules for
Quantifiers

Reduction to propositional inference

➢ Suppose the KB contains just the following:

x. King(x)  Greedy(x)  Evil(x) King(John) Greedy(John) Brother(Richard, John)

➢ Instantiating the universal sentence in all possible ways, we have:

◦ King(John)  Greedy(John)  Evil(John)

◦ King(Richard)  Greedy(Richard)  Evil(Richard)

◦ King(John)

◦ Greedy(John)

◦ Brother(Richard, John)

INF2D: REASONING AND AGENTS 6

Inference Rules for
Quantifiers

Reduction to
Propositional Inference

Reduction to propositional inference

➢ Suppose the KB contains just the following:

x. King(x)  Greedy(x)  Evil(x) King(John) Greedy(John) Brother(Richard, John)

➢ Instantiating the universal sentence in all possible ways, we have:

◦ King(John)  Greedy(John)  Evil(John)

◦ King(Richard)  Greedy(Richard)  Evil(Richard)

◦ King(John)

◦ Greedy(John)

◦ Brother(Richard, John)

INF2D: REASONING AND AGENTS 7

Inference Rules for
Quantifiers

Reduction to
Propositional Inference

KB': The new KB will
then include extra
propositional symbols

Propositionalization

➢ Every FOL KB can be propositionalized so as to preserve entailment
◦ A ground sentence is entailed by new KB iff entailed by original KB

➢ Idea: propositionalize KB and query, apply DPLL (or some other
complete propositional method), return result

➢ Problem: with function symbols, there are infinitely many ground terms,
◦ e.g., Father(Father(Father(John)))

INF2D: REASONING AND AGENTS 8

Inference Rules for
Quantifiers

Reduction to
Propositional Inference

INF2D: REASONING AND AGENTS 9

Idea: For n = 0 to ∞ do
◦ create a propositional KB by instantiating with depth-n terms

◦ see if α is entailed by this KB

Problem: works if α is entailed, loops forever if α is not entailed

• If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the
propositionalized KB

Theorem: Herbrand (1930)

• Entailment for FOL is semi-decidable
(i.e., algorithms exist that say yes to every entailed sentence, but no algorithm
exists that also says no to every non-entailed sentence.)

Theorem: Turing (1936), Church (1936).

Inference Rules for
Quantifiers

Reduction to
Propositional Inference

Problems with Propositionalization

x. King(x)  Greedy(x)  Evil(x) King(John)

 y. Greedy(y) Brother(Richard,John)

◦ It seems obvious that Evil(John), but propositionalization produces lots of facts such as

Greedy(Richard) that are irrelevant.

➢ With p k-ary predicates and n constants, there are p·nk instantiations.

➢ We want to find a substitution both for the variables in the implication

sentence and for the variables in the sentences in the KB (e.g., x/John, y/John).

INF2D: REASONING AND AGENTS 10

A first-order
inference rule

Modus Ponens (Propositional Logic)

Latin for “method of putting by placing” – “way that affirms by affirming”

𝑃 𝑃 ⟹ 𝑄

𝑄

𝑃, 𝑃 ⟹ 𝑄 ⊢ 𝑄

INF2D: REASONING AND AGENTS 11

A first-order
inference rule

(Generalized)
Modus Ponens

Generalized Modus Ponens (GMP)

INF2D: REASONING AND AGENTS 12

A first-order
inference rule

Generalized
Modus Ponens

KB Applying GMP to KB

➢ GMP is a sound inference rule.

Unification
MAKE DIFFERENT LOGICAL EXPRESSIONS LOOK IDENTICAL

INF2D: REASONING AND AGENTS 13

Unification

INF2D: REASONING AND AGENTS 14

➢ The UNIFY algorithm takes two sentences and returns a unifier for

them if one exists.

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane)

Knows(John, x) Knows(y, OJ)

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 15

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ)

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 16

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y))

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 17

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard)

INF2D: REASONING AND AGENTS 18

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard) Fail!

INF2D: REASONING AND AGENTS 19

Unification examples

𝛼 𝛽 𝜃

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, OJ) {x/OJ, y/John}

Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}

Knows(John, x) Knows(x, Richard) Fail!

INF2D: REASONING AND AGENTS 20

Standardizing variables apart eliminates overlap of variables

e.g. change Knows(x, Richard) to Knows(z17, Richard) and then we succeed the last case with

𝜃 = {z17/John, x/Richard}

Most General Unifier (MGU)

Unifying Knows(John, x) and Knows(y, z)

𝜃 = {y/John, x/z} or 𝜃 = {y/John, x/John, z/John}

The first unifier is more general than the second.

FOL: There is a single most general unifier (MGU) that is unique up to renaming of
variables.

MGU = {y/John, x/z}

Can be viewed as an equation solving problem.

◦ i.e. solve Knows(John, x) ≟ Knows(y, z)

INF2D: REASONING AND AGENTS 21

MGU Examples

INF2D: REASONING AND AGENTS 22

MGU

Loves(John, x) ≟ Loves(y, Mother(y))

Loves(John, Mother(y)) ≟ Loves(y, y)

MGU Examples

INF2D: REASONING AND AGENTS 23

MGU

Loves(John, x) ≟ Loves(y, Mother(y)) {x/Mother(John), y/John}

Loves(John, Mother(y)) ≟ Loves(y, y)

MGU Examples

INF2D: REASONING AND AGENTS 24

MGU

Loves(John, x) ≟ Loves(y, Mother(y)) {x/Mother(John), y/John}

Loves(John, Mother(y)) ≟ Loves(y, y) Fail!

Finding the MGU

Can be broken-down into a series of steps
◦ Decomposition

◦ Conflict

◦ Eliminate

◦ Delete

◦ Switch

◦ Coalesce

◦ Occurs Check

Other presentations of algorithm are possible (see R&N)

INF2D: REASONING AND AGENTS 25

Decomposition

INF2D: REASONING AND AGENTS 26

Replace with

s1 ≟ t1, …, sn ≟ tn

Given

f(s1, …, sn) ≟ f(t1, …, tn)

Replace with

John ≟ y, x ≟ z

Given

Knows(John, x) ≟ Knows(y, z)

Example

Conflict

INF2D: REASONING AND AGENTS 27

Fail!

Given

f(s1, …, sn) ≟ g(t1, …, tn) where f≠g

fail

Given

Knows(John, x) ≟ Greedy(y)

Example

Eliminate

INF2D: REASONING AND AGENTS 28

Replace with

P{x/t} and x ≟ t

Given

P, x ≟ t where x occurs in P but not in t, and t is not a variable

Replace with

Knows(John, x) ≟ Knows(y, Richard), z ≟ Richard

Given

Knows(John, x) ≟ Knows(y, z), z ≟ Richard

Example

Delete

INF2D: REASONING AND AGENTS 29

Replace with

P

Given

P, s ≟ s

Replace with

z ≟ Richard

Given

z ≟ Richard, Greedy(John) ≟ Greedy(John)

Example

Switch

INF2D: REASONING AND AGENTS 30

Example

Replace with

P and x ≟ s

Given

P, s ≟ x where x is a variable and s is not

Replace with

Knows(John, x) ≟ Knows(y, z), z ≟ Richard

Given

Knows(John, x) ≟ Knows(y, z), Richard ≟ z

Coalesce

INF2D: REASONING AND AGENTS 31

Example

Replace with

P{x/y} and x ≟ y

Given

P, x ≟ y where x, y variables occurring in P

Replace with

Knows(John, x) ≟ Knows(z, z), y ≟ z

Given

Knows(John, x) ≟ Knows(y, z), y ≟ z

Occurs Check

INF2D: REASONING AND AGENTS 32

Example

Fail!

Given

x ≟ s where x occurs in s and s not a variable

Fail (else Eliminate will loop)

Given

P(x), x ≟ Father(x)

P(Father(Father(Father(…))))

Example

INF2D: REASONING AND AGENTS 33

Eliminate

y ≟ John, x ≟ Mother(John)

Switch

y ≟ John, x ≟ Mother(y)

Decompose

John ≟ y, x ≟ Mother(y)

Loves(John, x) ≟ Loves(y, Mother(y))

DIY (MGU)

• P(x,A) =?= P(f(y),y)

• P(x,g(x)) =?= P(f(y),y)

INF2D: REASONING AND AGENTS 34

New
Example
KB

INF2D: REASONING AND AGENTS 35

Example Knowledge Base

It is known in The Hundred-Acre
Wood that if someone who is very
fond of food gives a treat to one of
their friends, they are really generous.

Eeyore, the sad donkey, has some
hunny that he has received for his
birthday from Winnie-the-Pooh, who,
as we know, is very fond of food.

Prove that Winnie-the-Pooh is
generous.

INF2D: REASONING AND AGENTS 36

Formalisation

INF2D: REASONING AND AGENTS 37

if someone who is very fond of food gives a treat to one of their friends, they
are really generous

• 𝑉𝑒𝑟𝑦𝐹𝑜𝑛𝑑𝑂𝑓𝐹𝑜𝑜𝑑 𝑥 ∧ 𝑇𝑟𝑒𝑎𝑡 𝑦 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑 𝑧 ∧ 𝐺𝑖𝑣𝑒𝑠 𝑥, 𝑦, 𝑧 ⇒
𝐺𝑒𝑛𝑒𝑟𝑜𝑢𝑠(𝑥)

Eeyore (…) has some hunny

• ∃𝑥. 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝑥 ∧ 𝐻𝑢𝑛𝑛𝑦 𝑥 or after EI: 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝐻1 ∧
𝐻𝑢𝑛𝑛𝑦 𝐻1

that he has received for his birthday from Winnie-the-Pooh

• 𝐻𝑢𝑛𝑛𝑦 𝑥 ∧ 𝑂𝑤𝑛𝑠 𝐸𝑒𝑦𝑜𝑟𝑒, 𝑥 ⇒ 𝐺𝑖𝑣𝑒𝑠(𝑃𝑜𝑜ℎ, 𝑥, 𝐸𝑒𝑦𝑜𝑟𝑒)

Hunny is a treat.

• 𝐻𝑢𝑛𝑛𝑦 𝑥 ⇒ 𝑇𝑟𝑒𝑎𝑡(𝑥)

Residents of the the Hundred-Acre Wood are friends.

• 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑥, 𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝐴𝑐𝑟𝑒𝑊𝑜𝑜𝑑 ⇒ 𝐹𝑟𝑖𝑒𝑛𝑑(𝑥)

Eeyore is a resident of the the Hundred-Acre Wood.

• 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝐸𝑒𝑦𝑜𝑟𝑒, 𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝐴𝑐𝑟𝑒𝑊𝑜𝑜𝑑)

Pooh is very fond of food.

• 𝑉𝑒𝑟𝑦𝐹𝑜𝑛𝑑𝑂𝑓𝐹𝑜𝑜𝑑(𝑃𝑜𝑜ℎ)

Why?

➢ Setting the scene for inference & resolution.

➢ Linked to logic programming.

 …but more in the next lecture!

INF2D: REASONING AND AGENTS 38

	Default Section
	Slide 1: Unification & Generalised Modus Ponens
	Slide 2: Propositional vs First-Order Inference
	Slide 3: Universal instantiation (UI)
	Slide 4: Existential instantiation (EI)
	Slide 5: Inferential Equivalence
	Slide 6: Reduction to propositional inference
	Slide 7: Reduction to propositional inference
	Slide 8: Propositionalization
	Slide 9

	Unification
	Slide 10: Problems with Propositionalization
	Slide 11: Modus Ponens (Propositional Logic)
	Slide 12: Generalized Modus Ponens (GMP)
	Slide 13: Unification
	Slide 14: Unification
	Slide 15: Unification examples
	Slide 16: Unification examples
	Slide 17: Unification examples
	Slide 18: Unification examples
	Slide 19: Unification examples
	Slide 20: Unification examples
	Slide 21: Most General Unifier (MGU)
	Slide 22: MGU Examples
	Slide 23: MGU Examples
	Slide 24: MGU Examples
	Slide 25: Finding the MGU
	Slide 26: Decomposition
	Slide 27: Conflict
	Slide 28: Eliminate
	Slide 29: Delete
	Slide 30: Switch
	Slide 31: Coalesce
	Slide 32: Occurs Check
	Slide 33: Example
	Slide 34: DIY (MGU)

	New example KB
	Slide 35: New Example KB
	Slide 36: Example Knowledge Base
	Slide 37: Formalisation
	Slide 38: Why?

