Unification & Generalised Modus Ponens

Informatics 2D: Reasoning and Agents

Propositional vs First-Order Inference

- > So far, we know how to formulate simple inference rules in FOL.
- Goal: Enabling first-order inference

≻ Idea:

• Convert the KB to propositional logic and use propositional inference

> Better idea:

• Use inference methods to work with first-order sentences directly

> Infer any sentence by substituting a ground term for the variable

 $\forall v \ \alpha$

SUBST($\{v/g\}, \alpha$)

Example: $\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x)$ yields:

- $King(John) \land Greedy(John) \Rightarrow Evil(John)$
- $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
- $King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))$

Replace the variable by a single new constant symbol

 $\frac{\exists v \ \alpha}{\text{SUBST}(\{v/k\},\alpha)}$

Example. $\exists x. Crown(x) \land OnHead(x, John)$ yields:

• $Crown(C_1) \wedge OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

Inferential Equivalence

> UI can be applied many times to produce many different outcomes

- El can be applied once, then the existentially quantified sentence could be discarded.
- > The new knowledge base (KB') is inferentially equivalent to the old KB

Reduction to propositional inference

> Suppose the KB contains just the following:

 $\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x) King(John) Greedy(John) Brother(Richard, John)$

> Instantiating the universal sentence in all possible ways, we have:

- King(John) ∧ Greedy(John) ⇒ Evil(John)
- $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
- King(John)
- Greedy(John)
- Brother(Richard, John)

Reduction to propositional inference

> Suppose the KB contains just the following:

 $\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x) King(John) Greedy(John) Brother(Richard, John)$

> Instantiating the universal sentence in all possible ways, we have:

- King(John) \land Greedy(John) \Rightarrow Evil(John)
- King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
- King(John)
- Greedy(John)
- Brother(Richard, John)

KB': The new KB willthen include extra propositional symbols

Propositionalization

Every FOL KB can be propositionalized so as to preserve entailment
A ground sentence is entailed by new KB iff entailed by original KB

Idea: propositionalize KB and query, apply DPLL (or some other complete propositional method), return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930)

• If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

• create a propositional KB by instantiating with depth-*n* terms

 $\circ\,$ see if α is entailed by this KB

Problem: works if α is entailed, loops forever if α is not entailed

Theorem: Turing (1936), Church (1936).

• Entailment for FOL is **semi-decidable**

(i.e., algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence.)

Problems with Propositionalization

 $\forall x. \operatorname{King}(x) \land \operatorname{Greedy}(x) \Longrightarrow \operatorname{Evil}(x) \qquad \operatorname{King}(\operatorname{John})$

 $\forall y. \text{Greedy}(y)$ Brother(Richard, John)

- It seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant.
- \succ With *p k*-ary predicates and *n* constants, there are *p* · *n*^{*k*} instantiations.
- > We want to find a substitution both for the variables in the implication sentence and for the variables in the sentences in the KB (e.g., *x/John*, *y/John*).

Modus Ponens (Propositional Logic)

Latin for "method of putting by placing" - "way that affirms by affirming"

$$P, \qquad P \Longrightarrow Q \vdash Q$$

Generalized Modus Ponens (GMP)

such that $SUBST(\theta, p_i') = SUBST(\theta, p_i)$, for all *i*,

$$\frac{p_1', p_2', \dots, p_n', (p_1 \wedge p_2 \wedge \dots \wedge p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}$$

KB

 $\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x)$ Kinq(John) $\forall y \; Greedy(y)$

Applying GMP to KB

 p_1' is King(John) p_2' is Greedy(y) θ is $\{x/John, y/John\}$ q is Evil(x) $SUBST(\theta, q)$ is Evil(John)

 p_1 is King(x) p_2 is Greedy(x)

➢ GMP is a sound inference rule.

Unification

MAKE DIFFERENT LOGICAL EXPRESSIONS LOOK IDENTICAL

Unification

The UNIFY algorithm takes two sentences and returns a unifier for them if one exists.

UNIFY
$$(p,q) = \theta$$
 where SUBST $(\theta, p) =$ SUBST (θ, q)

α	β	heta
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

α	β	θ
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

Standardizing variables apart eliminates overlap of variables

e.g. change *Knows(x, Richard)* to *Knows(z*₁₇, *Richard)* and then we succeed the last case with $\theta = \{z_{17}/John, x/Richard\}$

Most General Unifier (MGU)

Unifying Knows(John, x) and Knows(y, z)

 $\theta = \{y/John, x/z\}$ or $\theta = \{y/John, x/John, z/John\}$

The first unifier is more general than the second.

FOL: There is a **single** most general unifier (MGU) that is unique up to renaming of variables.

 $MGU = \{y/John, x/z\}$

Can be viewed as an equation solving problem.

• i.e. solve Knows(John, x) $\stackrel{2}{=}$ Knows(y, z)

MGU Examples

	MGU
Loves(John, x) ≟ Loves(y, Mother(y))	
Loves(John, Mother(y)) ≟ Loves(y, y)	

MGU Examples

	MGU
Loves(John, x) ≟ Loves(y, Mother(y))	{x/Mother(John), y/John}
Loves(John, Mother(y)) ≟ Loves(y, y)	

MGU Examples

	MGU
Loves(John, x) ≟ Loves(y, Mother(y))	{x/Mother(John), y/John}
Loves(John, Mother(y)) ≟ Loves(y, y)	Fail!

Finding the MGU

Can be broken-down into a series of steps

- Decomposition
- Conflict
- Eliminate
- Delete
- Switch
- Coalesce
- Occurs Check

Other presentations of algorithm are possible (see R&N)

Decomposition

DIY (MGU)

- P(x,A) = ?= P(f(y),y)
- P(x,g(x)) = ?= P(f(y),y)

New Example KB

Example Knowledge Base

It is known in The Hundred-Acre Wood that if someone who is very fond of food gives a treat to one of their friends, they are really generous.

Eeyore, the sad donkey, has some hunny that he has received for his birthday from Winnie-the-Pooh, who, as we know, is very fond of food.

Prove that Winnie-the-Pooh is generous.

Formalisation

if someone who is very fond of food gives a treat to one of their friends, they are really generous

• $VeryFondOfFood(x) \land Treat(y) \land Friend(z) \land Gives(x, y, z) \Rightarrow$ Generous(x)

Eeyore (...) has some hunny

• $\exists x. Owns(Eeyore, x) \land Hunny(x)$ or after EI: $Owns(Eeyore, H_1) \land Hunny(H_1)$

that he has received for his birthday from Winnie-the-Pooh

• $Hunny(x) \land Owns(Eeyore, x) \Rightarrow Gives(Pooh, x, Eeyore)$

Hunny is a treat.

• $Hunny(x) \Rightarrow Treat(x)$

Residents of the the Hundred-Acre Wood are friends.

• $Resident(x, HundredAcreWood) \Rightarrow Friend(x)$

Eeyore is a resident of the the Hundred-Acre Wood.

• Resident(Eeyore, HundredAcreWood)

Pooh is very fond of food.

VeryFondOfFood(Pooh)

Why?

Setting the scene for inference & resolution.

Linked to logic programming.

...but more in the next lecture!