
Introduction
Planning with state-space search

Partial-order planning
Summary

Informatics 2D: Reasoning and Agents

Slides provided by Prof. Alex Lascarides

Lecture 17: State-Space Search and Partial-Order Planning

Informatics 2D 1 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Where are we?

Last time . . .

we defined the planning problem
discussed problem with using search and logic in planning
introduced representation languages for planning
looked at blocks world example

Today . . .

State-space search and partial-order planning

Informatics 2D 2 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Most straightforward way to think of planning process:
search the space of states using action schemata
Since actions are defined both in terms of preconditions and
effects we can search in both directions
Two methods:

1 forward state-space search: Start in initial state; consider
action sequences until goal state is reached.

2 backward state-space search: Start from goal state; consider
action sequences until initial state is reached

Informatics 2D 3 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Informatics 2D 4 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search

Also called progression planning
Formulation of planning problem:

Initial state of search is initial state of planning problem
(=set of positive literals)
Applicable actions are those whose preconditions are satisfied
Single successor function works for all planning problems
(consequence of action representation)
Goal test = checking whether state satisfies goal of planning
problem
Step cost usually 1, but different costs can be allowed

Informatics 2D 5 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search
Search space is finite in the absence of function symbols
Any complete graph search algorithm (like A∗) will be a
complete graph planning algorithm
Forward search does not solve problem of irrelevant actions (all
actions considered from each state)
Efficiency depends largely on quality of heuristics
Example:

Air cargo problem, 10 airports with 5 planes each, 20 pieces of
cargo
Task: move all 20 pieces of cargo at airport A to airport B
Each of 50 planes can fly to 9 airports, each of 200 packages
can be unloaded or loaded (individually)
So approximately 10K executable actions in each state
(50×9×200)
Lots of irrelevant actions get considered, although solution is
trivial!

Informatics 2D 6 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

In normal search, backward approach hard because goal
described by a set of constraints (rather than being listed
explicitly)
Problem of how to generate predecessors, but planning
representations allow us to consider only relevant actions
Exclusion of irrelevant actions decreases branching factor
In example, only about 20 actions working backward from goal
Regression planning = computing the states from which
applying a given action leads to the goal
Must ensure that actions are consistent, i.e. they don’t undo
any desired literals

Informatics 2D 7 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Air cargo domain example

Goal can be described as

At(C1,B)∧At(C2,B)∧ . . .At(C20,B)

To achieve At(C1,B) there is only one action,
Unload(C1,p,B) (p unspecified)
Can do this action only if its preconditions are satisfied.
So the predecessor to the goal state must include
In(C1,p)∧At(p,B), and should not include At(C1,B)
(otherwise irrelevant action)
Full predecessor:

In(C1,p)∧At(p,B)∧ . . .∧At(C20,B)

Load(C1,p) would be inconsistent (negates At(C1,B))
Informatics 2D 8 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

General process of constructing predecessors for backward
search given goal description G , relevant and consistent action
A:

Any positive effects of A that appear in G are deleted
Each precondition of A is added unless it already appears

Any standard search algorithm can be used, terminates when
predecessor description is satisfied by initial (planing) state
First-order case may require additional substitutions which
must be applied to actions leading from state to goal

Informatics 2D 9 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Heuristics for state-space search

Two possibilities:
1 Divide and Conquer (subgoal decomposition)
2 Derive a Relaxed Problem

Subgoal decomposition is . . .

optimistic (admissible) if negative interactions exist
(e.g. subplan deletes goal achieved by other subplan)
pessimistic (inadmissible) if positive interactions exist
(e.g. subplans contain redundant actions)

Relaxations:
drop all preconditions (all actions always applicable, combined
with subgoal independence makes prediction even easier)
remove all negative effects (and count minimum number of
actions so that union satisfies goals)
empty delete lists approach (involves running a simple planning
problem to compute heuristic value)

Informatics 2D 10 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

State-space search planning algorithms consider totally
ordered sequences of actions
Better not to commit ourselves to complete chronological
ordering of tasks (least commitment strategy)
Basic idea:

1 Add actions to a plan without specifying which comes first
unless necessary

2 Combine ‘independent’ subsequences afterwards

Partial-order solution will correspond to one or several
linearisations of partial-order plan
Search in plan space rather than state spaces (because your
search is over ordering constraints on actions, as well as
transitions among states).

Informatics 2D 11 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Example: Put your socks and shoes on

Informatics 2D 12 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:
Actions; initial plan contains dummy actions Start (no
preconditions, effect=initial state) and Finish (no effects,
precondition=goal literals)
Ordering constraints on actions A≺ B (A must occur before
B); contradictory constraints prohibited

Causal links between actions A
p→ B express A achieves p for

B (p precondition of B , effect of A, must remain true between
A and B); inserting action C with effect ¬p (A≺ C and
C ≺ B) would lead to conflict
Open preconditions: set of conditions not yet achieved by
the plan (planners try to make open precondition set empty
without introducing contradictions)

Informatics 2D 13 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

The POP algorithm

Final plan for socks and shoes example (without trivial
ordering constraints):
Actions: {RightSock,RightShoe,LeftSock,LeftShoe,Start,Finish}
Orderings: {RightSock ≺ RightShoe,LeftSock ≺ LeftShoe}
Links: {RightSock RightSockOn→ RightShoe,

LeftSock
LeftSockOn→ LeftShoe,

RightShoe
RightShoeOn→ Finish,

LeftShoe
LeftShoeOn→ Finish}

Open preconditions: {}
Consistent plan = plan without cycles in orderings and
conflicts with links
Solution = consistent plan without open preconditions
Every linearisation of a partial-order solution is a total-order
solution (implications for execution!)

Informatics 2D 14 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

The POP algorithm

Initial plan:
Actions: {Start,Finish}, Orderings: {Start ≺ Finish},
Links: {}, Open preconditions: Preconditions of Finish

Pick p from open preconditions on some action B , generate a
consistent successor plan for every A that achieves p

Ensuring consistency:
1 Add A

p→ B and A≺ B to plan. If A new, add A and Start ≺ A
and A≺ Finish to plan

2 Resolve conflicts between the new link and all actions and
between A (if new) and all links as follows:
If conflict between A

p→ B and C , add B ≺ C or C ≺ A

Goal test: check whether there are open preconditions
(only consistent plans are generated)

Informatics 2D 15 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (1)

Init(At(Flat,Axle)∧At(Spare,Trunk)). Goal(At(Spare,Axle)).

Action(Remove(Spare,Trunk),

Precond:At(Spare,Trunk)
Effect:¬At(Spare,Trunk)∧At(Spare,Ground))

Action(Remove(Flat,Axle),

Precond:At(Flat,Axle)
Effect:¬At(Flat,Axle)∧At(Flat,Ground))

Action(PutOn(Spare,Axle),

Precond:At(Spare,Ground)∧¬At(Flat,Axle)
Effect:¬At(Spare,Ground)∧At(Spare,Axle))

Action(LeaveOvernight, Precond:
Effect:¬At(Spare,Ground)∧¬At(Spare,Axle)∧¬At(Spare,Trunk)

∧¬At(Flat,Ground)∧¬At(Flat,Axle))

Informatics 2D 16 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (2)

Pick (only) open precondition At(Spare,Axle) of Finish
Only applicable action = PutOn(Spare,Axle)

Pick At(Spare,Ground) from PutOn(Spare,Axle)
Only applicable action = Remove(Spare,Trunk)

Situation after two steps:

Informatics 2D 17 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (3)

Pick ¬At(Flat,Axle) precondition of PutOn(Spare,Axle)
Choose LeaveOvernight, effect ¬At(Spare,Ground)
Conflict with link
Remove(Spare,Trunk)

At(Spare,Ground)→ PutOn(Spare,Axle)

Resolve by adding LeaveOvernight ≺ Remove(Spare,Trunk)
Why is this the only solution?

Informatics 2D 18 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (4)

Remaining open precondition At(Spare,Trunk), but conflict
between Start and ¬At(Spare,Trunk) effect of
LeaveOvernight

No ordering before Start possible or after
Remove(Spare,Trunk) possible
No successor state, backtrack to previous state and remove
LeaveOvernight, resulting in this situation:

Informatics 2D 19 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (5)

Now choose Remove(Flat,Axle) instead of LeaveOvernight
Next, choose At(Spark ,Trunk) precondition of
Remove(Spare,Trunk)
Choose Start to achieve this
Pick At(Flat,Axle) precondition of Remove(Flat,Axle),
choose Start to achieve it
Final, complete, consistent plan:

Informatics 2D 20 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Dealing with unbound variables

In first-order case, unbound variables may occur during
planning process
Example:

Action(Move(b,x ,y),

Precond:On(b,x)∧Clear(b)∧Clear(y)

Effect:On(b,y)∧Clear(x)∧¬On(b,x)∧¬Clear(y))

achieves On(A,B) under substitution {b/A,y/B}
Applying this substitution yields

Action(Move(A,x ,B),

Precond:On(A,x)∧Clear(A)∧Clear(B)

Effect:On(A,B)∧Clear(x)∧¬On(A,x)∧¬Clear(B))

and x is still unbound (another side of the least commitment
approach)

Informatics 2D 21 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Dealing with unbound variables

Also has an effect on links, e.g. in example above

Move(A,x ,B)
On(A,B)→ Finish would be added

If another action has effect ¬On(A,z) then this is only a
conflict if z = B

Solution: insert inequality constraints (in example: z ̸= B)
and check these constraints whenever applying substitutions
Remark on heuristics: Even harder than in total-order planning,
e.g. adapt most-constrained-variable approach from CSPs

Informatics 2D 22 / 23



Introduction
Planning with state-space search

Partial-order planning
Summary

Summary

State-space search approaches (forward/backward)
Heuristics for state-space search planning
Partial-order planning
The POP algorithms
POP as search in planning space
POP example
POP with unbound variables
Next time: Planning and Acting in the Real World I

Informatics 2D 23 / 23


	Introduction
	Planning with state-space search
	Forward state-space search
	Backward state-space search
	Heuristics for state-space search

	Partial-order planning
	The POP algorithm
	Example
	Dealing with unbound variables

	Summary

