


1 Introduction

Modeling and estimation of multivariate distributions is an important task in numerous fields,
such as finance, medicine and physics [3, 4, 5]. One approach to multivariate modeling is
to choose an existing distributional family of multivariate distributions, such as the Gaussian
distribution, and fit it to the data. This can be rather restrictive, since both the marginals and
the dependence structure are determined by the chosen distributional family. Copulas o↵er a
remedy to this problem: they are a mathematical construct to fully describe the dependence
between random variables. By Sklar’s Theorem [6], any joint distribution can be separated into
a copula distribution and a marginal distribution. Conversely, copula and marginal can be used
to model any multivariate distribution, allowing for marginals and dependence structure to be
modeled separately.

While the marginal and joint distributions are directly observable, the copula remains the hidden
dependence structure that connects joint and marginal distribution [7]. Both parametric and
semi-parametric estimation techniques have been proposed [8, 9, 10]. One downside of these
methods is again their restrictiveness. To estimate copulas, they take assumptions about the
underlying distributional family, which can lead to false certainty in predictions.

One consequential example of this occurred in what led up to the financial crisis of 2008: a
copula function approach by Li [11] had become the standard tool to model the joint distri-
bution of the time until default of financial products given only measurements of the marginal
distributions derived from market information, such as risky bond prices or asset swap spreads.
This allowed complex risks to be modeled from available data. The formula made, however,
a critical assumption: that the dependence between the random variables follows a gaussian
distribution. This is especially problematic in the tails, where the gaussian copula predicts a
low dependence. This low dependence led to an under-estimation of the time until default in
the case of unlikely events, and thus a false sense of security when joining financial products
such as bonds.

One possible solution to this is the use of non-parametric methods. These methods do not place
an assumption on the form of the copula or the marginals, and thus o↵er greater generality. Two
common methods of non-parametric estimation are kernel-based methods and neural networks.
For copula estimation, kernel-based methods have been well explored [7, 12], while literature
on copula estimation using neural networks remains sparse.

Recently, Wiese et al. [1] proposed Copula and Marginal Generative Flows (CM Flows), a
method that uses Flow-based generative models for the estimation of copula and marginal from
a bivariate joint distribution. Generative models try to generate examples that come from the
same distribution as the distribution of the data they are trained on. So, given samples from
a joint distribution p(X, Y) or marginal distributions p(X) and p(Y), they generate examples
that follow these distributions. This makes them suitable for tasks, where the underlying
distribution is unknown and of interest. There are di↵erent kinds of generative models, such
as Generative Adversarial Networks (GANs), Variational autoencoders (VAEs) and Flow-based
Generative Models (also called generative flows). Unlike GANs and VAEs, generative flows
explicitly model the input distribution. They are more straightforward to train, since the loss
function is simply the negative log-likelihood [13].

In the proposed research project, I will explore the use of CM flows for estimating copulas.
I will first create a Pytorch implementation of CM flows, which I will evaluate using known
copula families. In addition to the evaluation performed by Wiese et al. [1], I will evaluate the
predictions of the marginals explicitly, and evaluate the model without assuming tail beliefs.
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This will give further insight on the behaviour of CM flows in the tails, where only few data
points are sampled.

Then, I will extend CM flows on multivariate joint distributions: In their paper, Wiese et al.
[1] only introduce bivariate CM flows, and hint to the use of vine copulas for multivariate CM
flows. R-vine copulas are a graphical tool to generate a multivariate copula from connected
bivariate copulas. Finding a suitable R-vine structure is a di�cult task, since for n dimensions,

there exist n!
2 ⇥ 2(

n�2
2 ) di↵erent R-vines [14]. This is why most approaches use a heuristic to

find an R-vine structure. Dissmann et al. [2] use a sequential approach for this task: they
first identifying the first tree, its pair-copula families and estimating their parameters, then the
second, and so on. In the proposed research, the selection of R-vine structure is distinct from
the selection of the copula family and estimation of copula parameters. Exploiting this, I will
replace the selection of copula family and estimation of copula parameters by the CM flows
implementation. This will result in a new estimator for multivariate copulas.

The research questions are:

1. Are CM flows a suitable method for bivariate copula estimation?

2. Can CM flows improve multivariate copula estimation using R-vines?

The research objectives are:

1. Implement and evaluate CM flows on bivariate distributions

2. Create a multivariate copula estimator using CM flows and R-vines

Beneficiaries The proposed research will benefit the academic field on non-parametric copula
estimation in three ways: first, it will further explore the suitability of generative flows for copula
estimation. Second, it will provide a method of incorporating CM Flows in R-vine estimation.
Third, I am planning to make my python implementation of CM Flows publicly available on
Github, so applied researchers and practitioners can easily implement CM flows to estimate
copulas.

Feasibility CM flows combine two generative flow models: Real-NVPs and DDSFs. Both of
these have publicly available Pytorch implementations. These can be combined to create CM
flows, without the need to write the models from scratch. The implementation of CM flows for
R-vines poses a more di�cult problem, since it could take considerable time to incorporate CM
flows into the R-vines estimation technique.

This research proposal is structured as follows: section 2 gives a brief overview over the relevant
literature. Section 3 provides the mathematical background needed. Section 4 describes the
methodology, evaluation techniques, and expected outcomes. Section 5 outlines the research
plan, milestones and deliverables.

2 Literature Review

Copulas can be estimated via maximum-likelihood estimation by placing assumptions on both
the form of the copula and the marginal. This parametric estimation has been proposed by
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Oakes [8], for example. Semi-parametric estimation methods place assumptions only on the form
of the copula, as seen in Genest et al. [9] and Chen and Fan [10]. Kernel-based nonparametric
estimation methods have been proposed by Chen and Huang [7] and Scaillet and Fermanian
[12]. Elidan [15] combine Bayesian Networks with copulas for multi-dimensional modeling.

Flow-based generative models use normalizing flows for density estimation. Notable normalizing
flows include Real-valued Non-Volume Preserving (RealNVP) transformations [16], Non-linear
Independent Components Estimation (NICE) [16] and Deep Dense Sigmoidal Flows (DDSFs)
[17]. Wiese et al. [1] use a DDSF for estimation of the marginal distribution, and a RealNVP
for copula estimation.

Since constructing high-dimensional copulas is di�cult, several methods attempt to combine
bivariate copulas to achieve higher dimensions. There exist hierarchical tree compositions [18],
mixture of trees [19] and recursive construction of conditional bivariate copulas [20, 21, 22]. A
sequential bayesian method of R-vines estimation have been suggested by Gruber et al. [23].
An approach using Bayesian Networks has been proposed by [15].

Dissmann et al. [2] use a sequential approach for finding an appropriate R-vine tree structure:
they first identify the first tree, its pair-copula families and then estimate their parameters.
Then, they estimate the second tree and so on. For tree selection they use a maximum span-
ning algorithm. Pair-copulas are chosen using the Akaike information criterion. Parameter
estimation follows Aas et al. [20].

3 Background

This section provides the definitions for the most important concept used in the proposed
research. Namely, they are the definition of a copula and Sklar’s theorem, which forms the
basis for connection the joint and marginal distributions. For normalizing flows, the change
of variable formula is needed to calculate the loss function. For the extension on R-vines, the
definition of R-vines is given.

A copula is the cumulative distribution function (CDF) of a random vector defined on the
hypercube [0, 1]d with uniform marginals over [0,1]: C(u1, ..., ud) = P (U1  u1, ..., Ud  ud) for
d dimensions, where Ui ⇠ U[0,1] and C(u1, ..., ud) : [0, 1]d ! [0, 1] [24]. The copula probability

density function (PDF) is defined as c(u1, ..., ud) = @
d
C(u1, ..., ud)/@u1...@ud.

Figure 1 illustrates the copula of a multivariate normal joint distribution. The probability
integral transform can be used to transform the marginals of a multivariate joint distribution
to become uniform: for any distribution X with CDF FX , FX(X) has uniform distribution.
Sklar’s theorem [24] formalized how copulas connect the marginal and joint distributions:

Sklar’s Theorem: LetX = (X1, ..., Xd) be a d-dimensional random vector with CDF FX that
has the marginals F1, ..., Fd. Then there exists a copula C such that 8x 2 Rd : FX(x1, ..., xd) =
C(F1(x1), ..., Fd(xd)), xi 2 R. When the marginals are continuous, the copula is unique. Note,
that Ui = Fi(Xi) is uniformly distributed, and xi = F

�1
i (ui) if ui ⇠ U and Fi being the marginal

of xi. For ui 2 [0, 1]:
C(u1, ..., ud) = FX(F�1

1 (u1), ..., F
�1
d (ud)) (1)

Following Safaai et al. [25], copula density can then be written as

c(u1, ..., ud) =
fX(F�1

1 (u1), ..., F
�1
d (ud))Qd

i=1 fi(F
�1
i (ui))

(2)
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(a) Probability Integral Transform (b) Joint Distribution (c) Copula

Figure 1: Copula Illustration for a multivariate normal joint distribution

and thus, the joint PDF fX can be separated into the copula c and the product of marginal
densities. This allows for an interpretation of the copula as the part of the joint density function
that is independent from the marginals and captures the dependencies between the variables
[25].

Normalizing Flows Both DDSFs and Real NVPs are normalizing flows. They are used to
transform one random variable into another and are denoted as f⇥ : X ! Y . They consist
of invertible transformations with a tractable Jacobian [17]. Being invertible, the change of
variables formula can be applied on the densities pY (y) and pX(x):

pY (y) =

����
@f(x)

@x

����
�1

pX(x) (3)

The determinant of f’s Jacobian is needed on the RHS to adjust the expanding or contracting
of regions of X by f [17].

R-Vines A regular (R-) vine tree sequence is a set of trees v = (T1, ..., Td�1) if:

1. Each tree Tj = (Nj , Ej) is connected.

2. T1 is a tree with node set N1 = 1, ..., d and edge set E1.

3. For j � 2, Tj is a tree with node set Nj = Ej�1 and edge set Ej .

4. For j = 2, ..., d� 1 and a, b 2 Ej it must hold that |a \ b| = 1 [26].

Thus, a regular vine has a nested structure: the edges in the first tree and the nodes in the
second tree, the edges in the second tree are the nodes in the first tree, and so on.

The regular vine distribution consists of the R-vine tree sequence v on d elements, the marginal
distributions F = (F1, ..., Fd) of the random variable Xi, i = 1, ..., d, the bivariate copulas
B = Cl|e 2 Ei, i = 1, ..., d� 1 and the relationship between the R-vine tree sequence v and the
set B of bivariate copulas [26].
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4 Methodology

CM flows The model follows Wiese et al. [1]: they propose CM flows composed of a copula
flow h⌘ : [0, 1]2 ! [0, 1]2 and a marginal flow m✓ : [0, 1]2 ! R. The marginal flow approximates
the inverse marginal CDFs F�1

X1
and F

�1
X2

, the copula flow approximates the generating function
of the copula (C1, C2) = (FX1(X1), FX2(X2)). The CM flow is given by g✓,⌘(u) = m✓ �h⌘(u) for
u 2 [0, 1]2 [1].

The univariate marginal flow is defined as a DDSF f : R⇥⇥! R, the bivariate marginal flow
is simply defined as

m✓(u) =
h
m

(1)
✓1

(u1),m
(2)
✓2

(u2)
iT

(4)

with u 2 [0, 1]d [1].

The bivariate copula flow is constructed using a Real NVP h̃ : R ⇥H ! R2 and the function
 : R ! [0, 1] [1]:

h : [0, 1]2 ⇥H ! [0, 1]2

(u, ⌘) 7!  � h̃⌘ � �1(u)
(5)

The function  projects the input from the unit square onto the real numbers, and  �1 projects
the output of the RealNVP back onto the unit square. Wiese et al. [1] use the sigmoid function
as  . Alternatively, one could use the inverse CDF of the normal distribution.

Tail Belief Wiese et al. [1] use tail beliefs to model exact tails of the marginals. The univariate
marginal flowm(u, ✓) follows the tail belief in the tails and becomes a scaled version of the DDSF
f outside the tails. The parameter ✓ can be optimized by minimizing the NLL only outside of
the tails. In the proposed research, I will first implement the model without tail beliefs, to see
how CM flows behave in the tails. Evaluating the model with tail beliefs is an option.

Evaluation CM Flows While the CM flows are trained only on samples from the joint
distribution, I evaluate them using known copula densities. The copula flow’s objective it to
achieve a uniform distribution in the marginals of the copula, U ⇠ U([0, 1]2), and minimize the
di↵erence between (C1, C2) and (C̃1, C̃2)) = (h⌘,1(U), h⌘,2(U)). The latter is computed using
the Jensen-Shannon divergence (JSD). The uniformity of the marginals of the copula is assessed
with two metrics:

T (i, n) =
1

n

X

k=1,...,n

���logP(C̃i 2 Ak + log n
��� (6)

which is being approximated using Monte-Carlo, and

M(i, n) = max
k=1,...,n

���logP(C̃i 2 Ak + log n
��� (7)

with Ak = [(k � 1)/n, k/n], k = 1, ..., n.

Additionally, I will evaluate the estimation of the marginals, using JSD for the predicted
marginals and the true marginal.

Extension on R-vines Dissmann et al. [2] deploy a sequential, heuristic algorithms to choose
R-vines. Their tasks can be split into:
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1. selecting an R-vine structure

2. choose a bivariate copula family for each variable pair

3. estimate parameters for each copula

For step 1, they use a maximum spanning algorithm to select the tree that maximizes the sum of
absolute empirical Kendall’s taus. To estimate the bivariate copulas, they select a copula from
a known copula family and estimate its parameters. In my model, Steps 2 and 3 are replaced
by CM flows, for non-parametric copula estimation.

Evaluation R-vines Dissmann et al. [2] use a simulation study to evaluate their algorithm.
In the proposed research, I will evaluate the performance of the R-vine CM flows using simulated
data of multivariate distributions using known copula families. Dissmann et al. [2] compare the
predicted model to the true model using the general tau-di↵erence and the lower and upper
tau-di↵erence. The general tau-di↵erence is the mean absolute di↵erence between pairwise
empirical Kendall’s taus of the simulated data from the true and selected models. The lower and
upper tau-di↵erence is the mean absolute di↵erence between pairwise empirical lower and upper
exceedance Kendall’s taus. Another evaluation method would be to measure KL-divergence of
the predicted copula and marginal to the true copula and marginal.

Data Evaluation on simulated data allows for an exact comparison between the true under-
lying copula and the predicted copula. Hence, both models are evaluated on simulated data.
Wiese et al. [1] evaluate CM flows for the Clayton, Gumbel and Frank copula. Evaluation on
other copula families is possible. For the R-vine extension, higher dimensional data can be
simulated using combinations of di↵erent copulas, from the same or other di↵erent families.

Expected Outcomes The implementation of CM Flows is expected to yield similar results
to Wiese et al. [1]. I expect the evaluation of the marginals to yield positive results. Since I am
not assuming tails, I expect the prediction in the tails to be less accurate, since only few data
points are available for training. The outcomes of the R-vine extension are less predictable. In
the desired case, using CM Flows for R-vine estimation could result in a non-parametric model
that is able to estimate R-vines well. But problems could arise: since more than one CM Flow
has to be trained per R-vine, training time for the whole model could become high.

Overall, I expect the proposed research to yield further insights into CM flows, especially
when not assuming tail beliefs. In addition, the proposed research could result in a new non-
parametric estimation method for R-vines.

Limitations The proposed research is limited to evaluation on simulated data. A model
that performs well on simulated data might not do so on empirical data, due to errors in data
collection or biased sampling. However, since the model is non-parametric, it can be assumed to
generalize better to empirical data than parametric models. Other limitations of the proposed
research are given by personal time constraints: the baseline CM flows model will not be
changed, for example by trying di↵erent types of generative flows. For the R-vine extension,
there are many di↵erent types of R-vine structure selection techniques, some of which might
perform better with CM flows.
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Milestone Week Description

M1 3 Implement CM Flows
M2 8 Implement R-vine extension
M3 11 Dissertation Write-up

Table 1: Milestones defined in this project.

Deliverable Week Description

D1 4 Draft Evaluation of CM Flows
D2 9 Draft Evaluation R-vine extension
D3 11 Dissertation

Table 2: List of deliverables defined in this project.
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