Introduction to Quantum Computing
Lecture 16: Variational Quantum Algorithms II

Petros Wallden

School of Informatics, University of Edinburgh

16th November 2023
This Lecture

1. Step 2: How to Measure the Energy/Cost
2. Step 3: The Ansatz (Family of Quantum States)
3. Step 4: Classical Optimisation & VQA Summary
Step 2: How to Measure the Energy/Cost
Previously in VQA

The Mathematical Task

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called “ground state energy”).
Previously in VQA

The Mathematical Task

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called “ground state energy”)

Why is it relevant?

- Can solve it using VQA that is suitable for NISQ devices
- k-local Hamiltonian problem is QMA-complete
Previously in VQA: the four steps

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable qubit-Hamiltonian \mathcal{H}
Previously in VQA: the four steps

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable qubit-Hamiltonian \mathcal{H}

Step 2 Energy estimation (the only quantum part)

Given copies of a state $|\psi\rangle$, estimate its energy $\langle \psi | \mathcal{H} | \psi \rangle$

Step 3 Choice of Ansatz

A family of parametrised quantum states $|\psi(\tilde{\theta})\rangle$ where one of its members approximates best the ground state

Step 4 Classical optimiser

A classical optimiser that finds the values $\tilde{\theta}^*$ that minimise the cost $C(\tilde{\theta}) := \langle \psi(\tilde{\theta}) | \mathcal{H} | \psi(\tilde{\theta}) \rangle$, i.e. $\tilde{\theta}^* := \text{arg min}_{\tilde{\theta}} C(\tilde{\theta})$
Step 2: Energy Estimation

Given:

- An efficient, NISQ compatible, description to generate an n-qubit quantum state $|\psi\rangle$
- An n-qubit Hamiltonian \mathcal{H}
Step 2: Energy Estimation

Given:

- An efficient, NISQ compatible, description to generate an n-qubit quantum state $|\psi\rangle$
- An n-qubit Hamiltonian \mathcal{H}

Task: Estimate the energy $E(\psi) := \langle \psi | \mathcal{H} | \psi \rangle$
Step 2: Energy Estimation

Given:

- An efficient, NISQ compatible, description to generate an \(n \)-qubit quantum state \(|\psi\rangle \)
- An \(n \)-qubit Hamiltonian \(\mathcal{H} \)

Task: Estimate the energy \(E(\psi) := \langle \psi | \mathcal{H} | \psi \rangle \)

1. Decompose the Hamiltonian to sum of Pauli observables
2. Generate multiple copies of \(|\psi\rangle \)
3. Measure each Pauli suff times to get desired accuracy
4. Combine above to get an estimate for the energy \(E(\psi) \)
Decompose Hamiltonian to local Pauli observables

- **Pauli** observables can be measured *locally* and *easily*

- Frequently the Hamiltonian is already as sum of Pauli’s

 E.g. Ising Hamiltonians

 \[\mathcal{H} = - \sum_{(i,j)} J_{ij} Z_i \otimes Z_j - \mu \sum_i h_i Z_i \]

- Other decompositions of the Hamiltonian to simple local observables can and have been considered (not here)
Decompose Hamiltonian to local Pauli observables

- Any n-qubit Hermitian operator can be written as sum of products of Pauli matrices $P_i \in \{I, X, Y, Z\}$ (is orthonormal basis – Pauli observ: $\{+1, -1\}$ eigenvalues)

$$\mathcal{H} = \sum c_{i_1, \ldots, i_n} P_{1}^{i_1} \otimes \cdots \otimes P_{n}^{i_n}$$
Any n-qubit Hermitian operator can be written as sum of products of Pauli matrices $P_i \in \{I, X, Y, Z\}$ (is orthonormal basis – Pauli observ: $\{+1, -1\}$ eigenvalues)

$$H = \sum c_{i_1, \ldots, i_n} P_{i_1}^{i_1} \otimes \cdots \otimes P_{i_n}^{i_n}$$

Practically, in many cases it is given in this form or in a similar form where one needs to decompose some fixed two-qubit gates ($\wedge X, \wedge Z$, etc) in Pauli’s
Decompose Hamiltonian to local Pauli observables

- Any n-qubit Hermitian operator can be written as sum of products of Pauli matrices $P_i \in \{I, X, Y, Z\}$ (is orthonormal basis – Pauli observ: $\{+1, -1\}$ eigenvalues)

$$\mathcal{H} = \sum c_{i_1, \ldots, i_n} P_{1}^{i_1} \otimes \cdots \otimes P_{n}^{i_n}$$

- Practically, in many cases it is given in this form or in a similar form where one needs to decompose some fixed two-qubit gates ($\wedge X, \wedge Z$, etc) in Pauli’s

- To compute coefficients c_{i_1, \ldots, i_n} use the inner product

$$\langle A, B \rangle := \frac{\text{Tr}(A^\dagger B)}{2^n}$$

$$c_{i_1, \ldots, i_n} = \langle P_{1}^{i_1} \otimes \cdots \otimes P_{n}^{i_n}, \mathcal{H} \rangle$$
Decompose Hamiltonian to local Pauli observables

Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli’s

$$H = \alpha I + \beta X + \gamma Y + \delta Z$$
Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli's

$$H = \alpha I + \beta X + \gamma Y + \delta Z$$

\[
\begin{align*}
\langle I, H \rangle &= \alpha = 0 \\
\langle X, H \rangle &= \beta = \frac{\sqrt{2}}{2} \\
\langle Y, H \rangle &= \gamma = 0 \\
\langle Z, H \rangle &= \delta = \frac{\sqrt{2}}{2}
\end{align*}
\]
Example:

Decompose \(H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \) in Pauli’s

\[
H = \alpha I + \beta X + \gamma Y + \delta Z
\]

\[
\langle I, H \rangle = \alpha = 0 \quad ; \quad \langle X, H \rangle = \beta = \sqrt{2}/2
\]
\[
\langle Y, H \rangle = \gamma = 0 \quad ; \quad \langle Z, H \rangle = \delta = \sqrt{2}/2
\]

As expected

\[
H = \frac{1}{\sqrt{2}} (X + Z) = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)
\]
Decompose Hamiltonian to local Pauli observables

Example:

Decompose \(H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \) in Pauli’s

\[
H = \alpha I + \beta X + \gamma Y + \delta Z
\]

\[
\langle I, H \rangle = \alpha = 0 \quad ; \quad \langle X, H \rangle = \beta = \sqrt{2}/2
\]

\[
\langle Y, H \rangle = \gamma = 0 \quad ; \quad \langle Z, H \rangle = \delta = \sqrt{2}/2
\]

As expected

\[
H = \frac{1}{\sqrt{2}} (X + Z) = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)
\]

Other example (check)

\[
\wedge Z = \frac{1}{2} (I \otimes I + I \otimes Z + Z \otimes I - Z \otimes Z)
\]
Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle O \rangle = \sum_i O_i/N$ for the value of the observable

If we require accuracy of our estimate ϵ with δ confidence:

$$N \approx \frac{1}{\epsilon^2 \log \frac{1}{\delta}}$$

By Hoeffding (and Chernoff) inequalities we know:

$$\Pr(|\overline{O} - \langle O \rangle| \geq \epsilon) \leq e^{-N \epsilon^2}$$

Probability that the true expectation differs by ϵ or more from the measured one.

If we require that this probability is also bounded by $\delta = e^{-N \epsilon^2}$ our confidence, we get above expression.
Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle O \rangle = \sum_i O_i / N$ for the value of the observable
- If we require accuracy of our estimate ϵ with δ confidence:

$$N \approx O\left(\frac{1}{\epsilon^2 \log \left(\frac{1}{\delta}\right)}\right)$$
Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle O \rangle = \sum_i O_i / N$ for the value of the observable
- If we require accuracy of our estimate ϵ with δ confidence:

$$N \approx O\left(\frac{1}{\epsilon^2} \log \left(\frac{1}{\delta}\right)\right)$$

- By Hoeffding (and Chernoff) inequalities we know:

$$Pr(|\bar{O} - \langle O \rangle| \geq \epsilon) \leq e^{-N\epsilon^2}$$

 Probability that the true expectation differs by ϵ or more from the measured one

- If we require that this probability is also bounded by $\delta = e^{-N\epsilon^2}$ our confidence, we get above expression
Implications of the accuracy

- Note that the **resources** required depend on the problem.

- **NP-complete** problems (or even worse QMA-complete) cannot be solved in poly-time with a quantum computer.

- Problems outside BQP have negligible “energy gap”, i.e. the ground state differs from the next eigenvalue (1st excited state) by a very small amount.

- To achieve **accuracy that distinguishes** between the two, one needs **super-polynomial repetitions**.
Implications of the accuracy

- Note that the resources required depend on the problem

- NP-complete problems (or even worse QMA-complete) cannot be solved in poly-time with a quantum computer

- Problems outside BQP have negligible “energy gap”, i.e. the ground state differs from the next eigenvalue (1st excited state) by a very small amount

- To achieve accuracy that distinguishes between the two, one needs super-polynomial repetitions

- High accuracy is also required:
 - To move in a hyper-parametrised space (where gradients are negligible)
 - To overcome the effects of noise and determine truly the direction in the parameter space to move.
Computing the Energy $E(\psi)$

Using the Pauli decomposition we have:

$$E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1, \ldots, i_n} \langle \psi | P_{i_1}^{i_1} \otimes \cdots \otimes P_{i_n}^{i_n} | \psi \rangle$$

where $\langle \psi | P_{i_1}^{i_1} \otimes \cdots \otimes P_{i_n}^{i_n} | \psi \rangle$ are the Pauli observables we estimated earlier.
Computing the Energy $E(\psi)$

- Using the Pauli decomposition we have:

$$E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1,\ldots,i_n} \langle \psi | P_{1}^{i_1} \otimes \cdots \otimes P_{n}^{i_n} | \psi \rangle$$

where $\langle \psi | P_{1}^{i_1} \otimes \cdots \otimes P_{n}^{i_n} | \psi \rangle$ are the Pauli observables we estimated earlier.

- The accuracy of the energy estimate depends on the accuracy of individual terms, and the number of terms in the sum.

- We will use this value as the “cost” of the state $|\psi\rangle$.
Computing the Energy \(E(\psi) \)

- Using the Pauli decomposition we have:

\[
E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1, \ldots, i_n} \langle \psi | P_{i_1}^1 \otimes \cdots \otimes P_{i_n}^n | \psi \rangle
\]

where \(\langle \psi | P_{i_1}^1 \otimes \cdots \otimes P_{i_n}^n | \psi \rangle \) are the Pauli observables we estimated earlier.

- The accuracy of the energy estimate depends on the accuracy of individual terms, and the number of terms in the sum.

- We will use this value as the “cost” of the state \(|\psi\rangle \).

- For the earlier example: \(H = \frac{1}{\sqrt{2}} (X + Z) \) we need to estimate two observables:

\[
\langle \psi | X | \psi \rangle = O_1 \quad \text{and} \quad \langle \psi | Z | \psi \rangle = O_2
\]

Resulting to \(E(\psi) = \frac{1}{\sqrt{2}} (O_1 + O_2) \)
Step 3: The Ansatz (Family of Quantum States)
To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**.

This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one member of the family approx. well the ground state.
Ansatz: The space we optimise

- To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**

- This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one member of the family approx. well the ground state.

- Can view the ansatz as a **family of parametrised quantum circuits**: \(|\psi(\vec{\theta})\rangle = U(\vec{\theta}) |0\rangle \)

- The circuits \(U(\vec{\theta}) \) should be NISQ devices compatible (short depth, limited width)
Ansatz: The space we optimise

- To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**

- This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one member of the family approx. well the ground state.

- Can view the ansatz as a **family of parametrised quantum circuits**: \(|\psi(\vec{\theta})\rangle = U(\vec{\theta}) |0\rangle \)

- The circuits \(U(\vec{\theta}) \) should be NISQ devices compatible (short depth, limited width)

- Two approaches: (i) Hardware Efficient, (ii) Problem Specific
Hardware Efficient Ansatz

- Generate a family of states that spans evenly the Hilbert space
- Needs to be able to produce high entanglement
- Should choose circuits that are easy to implement with a given NISQ device
- Generic Ansatz that can be used for any Hamiltonian problem
Hardware Efficient Ansatz

- Generate a family of states that spans evenly the Hilbert space
- Needs to be able to produce high entanglement
- Should choose circuits that are easy to implement with a given NISQ device
- Generic Ansatz that can be used for any Hamiltonian problem

Typical Ansatz:

1. A number of layers repeating the same circuit with different parameters
2. Single-qubit rotations parametrised by the rotation angle
3. Entangling gates (non-commuting with the rotations)
 - Hardware architecture determines entanglement topology
 - (all-to-all Vs nearest-neighbour)
An Example: 3-qubit, 1-layer, all-to-all entanglement

\[\vec{\theta} := (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \]

Diagram:

- |0⟩ -- H -- R(θ₁) -- R(θ₄) -- |ψ(θ)⟩
- |0⟩ -- H -- R(θ₂) -- |0⟩
- |0⟩ -- H -- R(θ₃) -- |0⟩
(ii) Problem Specific Ansatz

- Generate a family of states that **uses the problem’s Hamiltonian**
- Does not span evenly the Hilbert space – hopefully is **more dense around** the region we expect to have **the ground state**
- Not designed with the hardware in mind
(ii) Problem Specific Ansatz

- Generate a family of states that uses the problem's Hamiltonian

- Does not span evenly the Hilbert space – hopefully is more dense around the region we expect to have the ground state

- Not designed with the hardware in mind

- Is theoretically more promising, but in practice may lead to more noisy results

- Many families exist (e.g. unitary coupled cluster, adiabatic, etc).
Generate a family of states that uses the problem’s Hamiltonian.

Does not span evenly the Hilbert space – hopefully is more dense around the region we expect to have the ground state.

Not designed with the hardware in mind.

Is theoretically more promising, but in practice may lead to more noisy results.

Many families exist (e.g. unitary coupled cluster, adiabatic, etc).

We give an important type suitable for optimisation problems: Quantum Approximate Optimisation Algorithm (QAOA)
Let H_C be the **problem’s Hamiltonian** of Ising type (only Pauli-Z, up to quadratic terms)

Recall Max-Cut: $\mathcal{H}_C = \sum_{(i,j) \in E} Z_i \otimes Z_j$

Let $H_B = \sum_i X_i$ be the “mixer” Hamiltonian
Let H_C be the problem’s Hamiltonian of Ising type (only Pauli-Z, up to quadratic terms)

Recall Max-Cut: $H_C = \sum_{(i,j) \in E} Z_i \otimes Z_j$

Let $H_B = \sum_i X_i$ be the “mixer” Hamiltonian

A 1-layer QAOA ansatz is given by

$$e^{-i\beta H_B} e^{-i\gamma H_C} H^\otimes n |0\rangle^\otimes n$$

A single layer has only two parameters (β, γ), irrespective of the number of qubits/width of computation.
Quantum Approximate Optimisation Algorithm

- The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$

- Depending on interaction terms of H_C, entangling gates can act on distant qubits.

- The problem Hamiltonian has terms $Z_i \otimes Z_j$ leading to unitaries $e^{-i\gamma Z_i Z_j}$.

- The problem has to be Ising (i.e. only Pauli Z, and at most quadratic terms). Other cases can exist but the ansatz becomes much harder to implement.

- More layers repeat the above with fresh parameters (β_2, γ_2).
• The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$

• The problem Hamiltonian has terms $Z_i \otimes Z_j$ leading to unitaries $e^{-i\gamma Z_i Z_j}$:

\[R(2\gamma) \]
Quantum Approximate Optimisation Algorithm

- The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$

- The problem Hamiltonian has terms $Z_i \otimes Z_j$ leading to unitaries $e^{-i\gamma Z_i Z_j}$:

- Depending on interaction terms of H_C entangling gates can act on distant qubits

- Problem has to be Ising (i.e. only Pauli Z, and at most quadratic terms). Other cases can exist but ansatz becomes much harder to implement.
The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$

The problem Hamiltonian has terms $Z_i \otimes Z_j$ leading to unitaries $e^{-i\gamma Z_i Z_j}$:

Depending on interaction terms of H_C entangling gates can act on distant qubits

Problem has to be Ising (i.e. only Pauli Z, and at most quadratic terms). Other cases can exist but ansatz becomes much harder to implement.

More layers repeat the above with fresh parameters (β_2, γ_2)
Step 4: Classical Optimisation & VQA Summary
Given:

- Ansatz: set of q-states parametrised by classical parameters $\vec{\theta}$
- How to compute the “cost-function” $E(\vec{\theta}) = \langle \psi(\vec{\theta}) | \mathcal{H} | \psi(\vec{\theta}) \rangle$
Given:
- Ansatz: set of q-states parametrised by classical parameters $\vec{\theta}$
- How to compute the “cost-function” $E(\vec{\theta}) = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$

Task:
- **Find the minimum** (local or global).

Can use any **classical optimisation** technique
Moving Through Parameter Space

Given:

- Ansatz: set of q-states parametrised by classical parameters $\tilde{\theta}$
- How to compute the “cost-function” $E(\tilde{\theta}) = \langle \psi(\tilde{\theta}) | H | \psi(\tilde{\theta}) \rangle$

Task:

- Find the minimum (local or global).

Can use any **classical optimisation** technique

Examples of Techniques Used:

- Gradient Descent
- Monte Carlo - based
- Nelder-Mead method
- COBYLA (Constr. Optimiz. by Linear Approximation)
- Any deterministic or stochastic global optimisation method
Gradient Descent

- Trick to compute the gradient (generalises).

Parametrised gates: \(U_P = e^{-i\theta P} \) with \(P \) a Pauli
(recall \(P^2 = I \))

\[
U_P(\theta) = I \cos(\theta) - iP \sin(\theta) ; \quad \frac{\partial}{\partial \theta} U_P(\theta) = -iPe^{-i\theta P}
\]

leading to

\[
\frac{\partial}{\partial \theta} E(\theta) = E(\theta + \frac{\pi}{4}) - E(\theta - \frac{\pi}{4})
\]

Note: This difference is NOT infinitesimal!
Gradient Descent

- Trick to compute the gradient (generalises).
 Parametrised gates: $U_P = e^{-i\theta P}$ with P a Pauli (recall $P^2 = I$)

\[
U_P(\theta) = I \cos(\theta) - iP \sin(\theta) ; \quad \frac{\partial}{\partial \theta} U_P(\theta) = -iPe^{-i\theta P}
\]

leading to

\[
\frac{\partial}{\partial \theta} E(\theta) = E(\theta + \frac{\pi}{4}) - E(\theta - \frac{\pi}{4})
\]

Note: This difference is NOT infinitesimal!

- Move towards negative direction of the gradient:
 $\vec{\theta}_{i+1} = \vec{\theta}_i - \gamma \nabla E(\vec{\theta}_i) ; \quad \nabla E(\vec{\theta}_i) = \left(\partial_{\theta^1} E(\vec{\theta}) , \partial_{\theta^2} E(\vec{\theta}) , \partial_{\theta^3} E(\vec{\theta}) \right)$

- Can find local minima (not global)
Monte Carlo - Based

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$

- Generate a new guess $\vec{\theta}'$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta}')$

Observations May keep moving with greater new Energy (esc local min)

Keeping probability reduces with Energy difference

β is "inverse temperature". Can increase value with iteration steps $\beta(i)$ (so it stabilises in time)
Monte Carlo - Based

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$
- Generate a new guess $\vec{\theta}'$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta}')$
- If, $E(\vec{\theta}') \leq E(\vec{\theta}_0)$, keep guess and continue with $\vec{\theta}_1 := \vec{\theta}'$

Observations
- May keep moving with greater new Energy (esc local min)
- Keeping probability reduces with Energy difference
- β is "inverse temperature". Can increase value with iteration steps $\beta(i)$ (so it stabilises in time)
Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$

Generate a new guess $\vec{\theta}'$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta}')$

If, $E(\vec{\theta}') \leq E(\vec{\theta}_0)$, keep guess and continue with $\vec{\theta}_1 := \vec{\theta}'$

Else, with probability $p_r = 1 - e^{-\beta(E(\vec{\theta}') - E(\vec{\theta}_0))}$, reject guess (make a fresh guess starting again from $\vec{\theta}_0$)

With the remaining probability $p_a = e^{-\beta(E(\vec{\theta}') - E(\vec{\theta}_0))}$, keep guess and continue with $\vec{\theta}_1 := \vec{\theta}'$
Monte Carlo - Based

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$

- Generate a new guess $\vec{\theta}'$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta}')$

- If, $E(\vec{\theta}') \leq E(\vec{\theta}_0)$, keep guess and continue with $\vec{\theta}_1 := \vec{\theta}'$

- Else, with probability $p_r = 1 - e^{-\beta(E(\vec{\theta}') - E(\vec{\theta}_0))}$, reject guess (make a fresh guess starting again from $\vec{\theta}_0$)

- With the remaining probability $p_a = e^{-\beta(E(\vec{\theta}') - E(\vec{\theta}_0))}$, keep guess and continue with $\vec{\theta}_1 := \vec{\theta}'$

Observations

- May keep moving with greater new Energy (esc local min)

- Keeping probability reduces with Energy difference

- β is “inverse temperature”. Can increase value with iteration steps $\beta(i)$ (so it stabilises in time)
Limitations

- **Resources:**
 - Repetitions per round (accuracy desired)
 - Optimisation rounds (classical optimisation problem)

Effect of noise:
- Greater repetitions to achieve desired accuracy
- Potentially systematic errors in estimating cost

Possible Failures:
- Converge to local minimum
- Fail to conv. (Flat Landscape a.e.) "Barren Plateau"

Overall limitations (heuristics):
- Not exact complexity
- No guarantee for obtaining solution
Limitations

- **Resources:**
 - Repetitions per round (accuracy desired)
 - Optimisation rounds (classical optimisation problem)

- **Effect of noise:**
 - Greater repetitions to achieve desired accuracy
 - Potentially systematic errors in estimating cost
Limitations

- **Resources:**
 - Repetitions per round (accuracy desired)
 - Optimisation rounds (classical optimisation problem)

- **Effect of noise:**
 - Greater repetitions to achieve desired accuracy
 - Potentially systematic errors in estimating cost

- **Possible Failures:**
 - Converge to local minimum
 - Fail to conv. (Flat Landscape a.e.) “Barren Plateau”
Limitations

- **Resources:**
 - Repetitions per round (accuracy desired)
 - Optimisation rounds (classical optimisation problem)

- **Effect of noise:**
 - Greater repetitions to achieve desired accuracy
 - Potentially systematic errors in estimating cost

- **Possible Failures:**
 - Converge to local minimum
 - Fail to conv. (Flat Landscape a.e.) “Barren Plateau”

- **Overall limitations (heuristics):**
 - Not exact complexity
 - No guarantee for obtaining solution
VQA Pictorially

fermionic problem

classical cost function

\[H_q = \sum_{\alpha} h_\alpha P_\alpha = \sum_{\alpha} h_\alpha \bigotimes_{j=1}^{N} \sigma_j^{\alpha j}. \]

prepare trial state

measure expectation values

solution \(\theta^* \)

Taken from: Nikolaj Moll et al 2018 Quantum Sci. Technol. 3 030503
Hybrid Quantum-Classical Algorithms

Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices
VQA: Summary

- Hybrid **Quantum-Classical** Algorithms

- **Quantum Part** needs small coherence time, works without QECC and can be optimised for given hardware:

 Best candidate for quantum speed-up at NISQ devices

1. Map problem to ground state energy of some Hamiltonian H (classical)
VQA: Summary

- **Hybrid Quantum-Classical Algorithms**

- **Quantum Part** needs small coherence time, works without QECC and can be optimised for given hardware:

 Best candidate for quantum speed-up at NISQ devices

1. Map problem to ground state energy of some Hamiltonian \mathcal{H} (classical)

2. Can generate (efficiently) a family of states $|\psi(\vec{\theta})\rangle$ (quantum)

3. Can compute expectation value $E_{\vec{\theta}} = \langle\psi(\vec{\theta})|\mathcal{H}|\psi(\vec{\theta})\rangle$ with local Pauli measurement for any guess $\vec{\theta}$ (quantum)
Hybrid Quantum-Classical Algorithms

Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

1. Map problem to ground state energy of some Hamiltonian \mathcal{H} (classical)

2. Can generate (efficiently) a family of states $|\psi(\vec{\theta})\rangle$ (quantum)

3. Can compute expectation value $E_{\vec{\theta}} = \langle \psi(\vec{\theta}) | \mathcal{H} | \psi(\vec{\theta}) \rangle$ with local Pauli measurement for any guess $\vec{\theta}$ (quantum)

4. Comparing $E(\vec{\theta})$ of existing points, evaluate a new guess $\vec{\theta}'$ using standard techniques. Feedback to step 2 to evaluate $E(\vec{\theta}')$ (classical)
Variational Quantum Algorithms Reviews

