Raul Garcia-Patron
Petros Wallden
IQC 2022-23
Milos Prokop
Tutorial 0
September 14, 2023

Problem 1: Complex Numbers

Consider the two complex numbers $v_{1}=1+i$ and $v_{2}=1-2 i$ where $i^{2}=-1$.
a. Calculate the complex numbers $z_{1}=v_{1}+v_{2}$ and $z_{2}=v_{1}-v_{2}^{*}$ where z^{*} denotes the complex conjugate of the complex number z.
b. Let $w=1-i$. Calculate $w z_{1}$ and $\left(z_{2} w\right)^{*}$.
c. Calculate the norm of v_{1} and v_{2}.

Problem 2: Inner-product and orthonormal bases

a. Consider the quantum states $|R\rangle=\frac{1}{\sqrt{2}}\binom{1}{i},|L\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}$,

1. Write $\langle R|$ and $\langle L|$ in vector notation.
2. Prove that both $|R\rangle$ and $|L\rangle$ are normalized, i.e. $\sqrt{\langle R \mid R\rangle}=\sqrt{\langle L \mid L\rangle}=1$
3. Are $|R\rangle$ and $|L\rangle$ orthogonal?
4. Show that $|R\rangle$ and $|L\rangle$ satisfy all the conditions of an orthonormal basis of $\mathcal{H}=\mathbb{C}^{2}$.

Problem 3: Matrices and operators

a.

1. One of the most important linear operators in quantum computing is the Hadamard operator defined as:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Find what is the action of the operator on the vector $|v\rangle=\frac{1}{\sqrt{2}}\binom{1}{i}$.
2. Consider two of the Pauli matrices:

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Calculate $X Z$ and $Z X$. Compare the two calculations.
b.

1. Show that for finite-size matrices $\left(A^{\dagger}\right)^{\dagger}=A$ always holds.
2. Prove that for two general matrices A and B we have $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
3. Prove that the Hadamard operator defined above is a self-adjoint operator.
c. Compute the eigenvalues and eigenvectors of X and Z.

Optional: More complex numbers

a. Use the Euler equation, i.e. $e^{i \theta}=\cos \theta+i \sin \theta$, to calculate $e^{i \pi}$ and $e^{2 i \pi / 4}$.
b. Let $z=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$. First calculate $|z|$ and then use the Euler equation to obtain ϕ so that $z=|z| e^{i \phi}$.

