Raul Garcia-Patron
Petros Wallden
IQC 2022-23
Milos Prokop
Tutorial 0

Problem 1: Complex Numbers

Consider the two complex numbers $v_{1}=1+i$ and $v_{2}=1-2 i$ where $i^{2}=-1$.
a. Calculate the complex numbers $z_{1}=v_{1}+v_{2}$ and $z_{2}=v_{1}-v_{2}^{*}$ where z^{*} denotes the complex conjugate of the complex number z.
Solution: $z_{1}=v_{1}+v_{2}=(1+i)+(1-2 i)=2-i$. In order to calculate z_{2}, we first have to conjugate the number v_{2}. Recall that for a complex number $w=a+b i$, its complex conjugate is $w^{*}=a-b i$. It's easy then to see that $v_{2}^{*}=1+2 i$ and thus $z_{2}=-i$
b. Let $w=1-i$. Calculate $w z_{1}$ and $\left(z_{2} w\right)^{*}$.

Solution: For the first multiplication we have:

$$
w z_{1}=(1-i)(2-i)=2-i-2 i-1=1-3 i
$$

since $i^{2}=-1$. For the second expression, we should first do the multiplication and then calculate the conjugate of the product. So

$$
z_{2} w=-i(1-i)=-i-1=-1-i
$$

and then if we conjugate:

$$
\left(z_{2} w\right)^{*}=-1+i
$$

c. Calculate the norm of v_{1} and v_{2}.

Solution: The norm of complex number $w=a+b i$ is defined as

$$
|w|=\sqrt{a^{2}+b^{2}}
$$

In our case, for v_{1} :

$$
\left|v_{1}\right|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

and for v_{2} :

$$
\left|v_{2}\right|=\sqrt{1^{2}+(-2)^{2}}=\sqrt{5}
$$

Problem 2: Inner-product and orthonormal bases

a. Consider the quantum states $|R\rangle=\frac{1}{\sqrt{2}}\binom{1}{i},|L\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}$,

1. Write $\langle R|$ and $\langle L|$ in vector notation.
2. Prove that both $|R\rangle$ and $|L\rangle$ are normalized, i.e. $\sqrt{\langle R \mid R\rangle}=\sqrt{\langle L \mid L\rangle}=1$
3. Are $|R\rangle$ and $|L\rangle$ orthogonal?

Raul Garcia-Patron
Petros Wallden
IQC 2022-23
Milos Prokop
Tutorial 0
September 27, 2023
4. Show that $|R\rangle$ and $|L\rangle$ satisfy all the conditions of an orthonormal basis of $\mathcal{H}=\mathbb{C}^{2}$.

Solution:

Let a vector $|\psi\rangle$ in the Dirac "ket" notation. If $|\psi\rangle=\binom{a}{b}$ then, the conjugate transpose vector, denoted $\langle\psi|$ and called a "bra" is defined as $\langle\psi|=\left(|\psi\rangle^{T}\right)^{*}=|\psi\rangle^{\dagger}=\left(\begin{array}{ll}a^{*} & b^{*}\end{array}\right)$ Thus,

$$
\langle R|=\frac{1}{\sqrt{2}}(1-i)
$$

and

$$
\langle L|=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right)
$$

We will prove that both $|R\rangle,|L\rangle$ are normalised.

$$
\langle R \mid R\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -i
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{i}=\frac{1}{2}(1+1)=1
$$

and so:

$$
\sqrt{\langle R \mid R\rangle}=1
$$

Same for $|L\rangle$:

$$
\langle L \mid L\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-i}=\frac{1}{2}(1+1)=1
$$

and so:

$$
\sqrt{\langle L \mid L\rangle}=1
$$

Two vectors $|R\rangle,|L\rangle$ are orthogonal if their inner product is 0 , i.e. $\langle R \mid L\rangle=0$. We have,

$$
\langle R \mid L\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -i
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-i}=\frac{1}{2}(1-1)=0
$$

So $|R\rangle$ and $|L\rangle$ are orthogonal.
Finally, for the last question, in order for $|R\rangle$ and $|L\rangle$ to satisfy all the conditions of an orthonormal basis, they must satisfy:

- Be orthogonal, which is true as we proved before.
- Be normalized to one, which we proved to be.
- The number of basis elements must be the same with the dimension of the vector space which is true as well.

Problem 3: Matrices and operators.

a.

1. One of the most important linear operators in quantum computing is the Hadamard operator defined as:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Find what is the action of the operator on the vector $|v\rangle=\frac{1}{\sqrt{2}}\binom{1}{i}$.
Solution. We want to calculate $H|v\rangle$. We have:

$$
H|v\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{i}=\frac{1}{2}\binom{1+i}{1-i}
$$

2. Consider two of the Pauli matrices:

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Calculate $X Z$ and $Z X$. Compare the two calculations.
Solution: We start by computing $X Z$. We have:

$$
X Z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

We continue by computing $Z X$. We have:

$$
Z X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

If we observe the two multiplications we see that $Z X=-X Z$. This is a well-known property of the Pauli matrices as all of them anticommute. For our case this translates to $\{X, Z\}=X Z+Z X=0$.
b.

1. Show that for finite-size matrices $\left(A^{\dagger}\right)^{\dagger}=A$ always holds.

Solution. Since $A_{i j}^{\dagger}=A_{j i}^{*}$ then $\left(A_{i j}^{\dagger}\right)^{\dagger}=\left(A_{j i}^{*}\right)^{\dagger}=\left(A_{i j}^{*}\right)^{*}=A_{i j}$ and thus:

$$
\left(A^{\dagger}\right)^{\dagger}=A \text { for every operator } A
$$

2. Prove that two general matrices A and B we have $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.

Solution: The definition of an adjoint operator M is:

$$
(|v\rangle, M|w\rangle)=\left(M^{\dagger}|v\rangle,|w\rangle\right)
$$

We can now write

$$
(|v\rangle, A B|u\rangle)=(|v\rangle, A(B|u\rangle)),
$$

where setting $|w\rangle=B|u\rangle$ and $M=A$ in the definition of adjoint operator above, allows us to write

$$
(|v\rangle, A(B|u\rangle))=\left(A^{\dagger}|v\rangle, B|u\rangle\right) .
$$

Using again the definition of the adjoint operator, now with B, we obtain

$$
\left(A^{\dagger}|v\rangle, B|u\rangle\right)=\left(B^{\dagger} A^{\dagger}|v\rangle,|u\rangle\right)
$$

and

$$
\begin{aligned}
(|v\rangle, A B|u\rangle) & =\left((A B)^{\dagger}|v\rangle,|u\rangle\right) \\
\Longrightarrow(A B)^{\dagger} & =B^{\dagger} A^{\dagger}
\end{aligned}
$$

3. Prove that the Hadamard operator defined above is a self-adjoint operator.

Solution. As we already mentioned, the elements of the adjoint Hadamard operator H^{\dagger} are related to those of the Hadamard operator H as $H_{i j}^{\dagger}=H_{j i}^{*}$. It is clear then that these two matrices are identical and as such the Hadamard operator is a self-adjoint operator.
c. Compute the eigenvalues and eigenvectors of X and Z.

Solution. We will work with the matrix X. The eigenvectors $|v\rangle$ of the matrix X are such that when X acts on the vectors $|v\rangle$ they are only scaled by a factor λ (which is called the eigenvalue of the matrix), i.e. $X|v\rangle=\lambda|v\rangle$
The eigenvalues λ of the matrix X must satisfy:

$$
\begin{aligned}
\operatorname{det}(X-\lambda I) & =0 \Longrightarrow\left|\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)\right|=0 \\
& \Longrightarrow \lambda^{2}-1=0 \Longrightarrow \lambda= \pm 1
\end{aligned}
$$

Thus, we found that the eigenvalues of X are ± 1. In order to find the eigenvectors, we replace the eigenvalues in the equation $X|v\rangle=\lambda|v\rangle$. Let's also write the vectors $|v\rangle$ as $|v\rangle=\binom{a}{b}$. For $\lambda=1$ we have:

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b}=\binom{a}{b} \\
\Longrightarrow\binom{b}{a}=\binom{a}{b}
\end{gathered}
$$

We can then conclude that the eigenvector corresponding to $\lambda=1$ eigenvalue is $|v\rangle=\binom{a}{a}$. If we impose the condition that the vector is normalized $\||v\rangle \|=1$ then we get $a=\frac{1}{\sqrt{2}}$. So the eigenvector becomes $|v\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$
By working in the same manner for the second eigenvalue $(\lambda=-1)$ it is easy to see that the second eigenvector is $|u\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$. In the quantum computing literature you will find that these two vectors are usually denoted as $|+\rangle$ and $|-\rangle$.
It is trivial to see that for Z the eigenvectors are the states of the computational basis $|0\rangle$ and $|1\rangle$ with eigenvalues 1 and -1 respectively.

Optional: More complex numbers

a. Use the Euler equation, i.e. $e^{i \theta}=\cos \theta+i \sin \theta$, to calculate $e^{i \pi}$ and $e^{2 i \pi / 4}$.

Solution: For the first case, $\theta=\pi$ and thus:

$$
e^{i \pi}=\cos \pi+i \sin \pi=-1+i 0=-1
$$

For the second case, $\theta=2 \pi / 4=\pi / 2$

$$
e^{i 2 \pi / 4}=\cos (\pi / 2)+i \sin (\pi / 2)=0+i=i
$$

b. Let $z=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$. First calculate $|z|$ and then use the Euler equation to obtain ϕ so that $z=|z| e^{i \phi}$.
Solution: As mentioned in question c. the norm of a complex number $w=a+b i$ is defined as:

$$
|w|=\sqrt{a^{2}+b^{2}}
$$

For $z=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$:

$$
|z|=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1
$$

So we need to find the angle θ so that $z=|z| e^{i \phi}=e^{i \phi}$ (since $|z|=1$). Using the Euler equation:

$$
\begin{gathered}
\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i=\cos \phi+i \sin \phi \\
\left(\frac{1}{\sqrt{2}}-\cos \phi\right)-\left(\frac{1}{\sqrt{2}}+\sin \phi\right) i=0
\end{gathered}
$$

Raul Garcia-Patron
Petros Wallden
IQC 2022-23
Milos Prokop
Tutorial 0
September 27, 2023
For a complex number $w=a+b i$ to be equal to zero, it must have both its imaginary and real part equal to zero. First, for the real part:

$$
\cos \phi=\frac{1}{\sqrt{2}}
$$

and for the imaginary part:

$$
\sin \phi=-\frac{1}{\sqrt{2}}
$$

Thus $\phi=7 \pi / 4$ and $z=e^{i 7 \pi / 4}$

