Raul Garcia-Patron
Petros Wallden
Milos Prokop
Tutorial 1
IQC 2022-23
Problem 1: Quantum Operations
One of the most important linear operators in quantum computing is the Hadamard operator defined as:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

a. Prove that H is unitary, i.e. that it satisfies $H H^{\dagger}=H^{\dagger} H=I$.

Solution: In order to prove that a matrix U is unitary, it must satisfies that $U U^{\dagger}=U^{\dagger} U=I$.
First we have to calculate the adjoint of the Hadamard operator. Recall that the matrix elements of the adjoint operator are related to that of the operator as $H_{i j}^{\dagger}=H_{j i}^{*}$. Thus:

$$
H^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

So we can see that $H^{\dagger}=H$. In order for H to be unitary then the following must hold:

$$
H^{\dagger} H=H H^{\dagger}=I
$$

We have:

$$
H H^{\dagger}=H^{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=I
$$

and thus $H^{\dagger} H=H H^{\dagger}=I$
b. Prove that H is its own inverse by showing $H^{2}=I$ where I is the identity operator.

Solution: This is a corollary of the previous result.
c. Calculate the action of the operator on the vectors:

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1},|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1},|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Solution: We will show what is the action of the Hadamard on the computational basis vector $|0\rangle$ and on the vector $|+\rangle$.

$$
H|0\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}=|+\rangle
$$

We can see how H acts on the $|+\rangle$ by doing the matrix multiplication but we can think of a more "clever" way. We proved on question b. that $H^{2}=I$. So,

$$
H|+\rangle=H(H|0\rangle)=H^{2}|0\rangle=|0\rangle
$$

You can work in the same way with the other two examples and prove that $H|1\rangle=|-\rangle$ and that $H|-\rangle=|1\rangle$.
Extra information: $H^{\dagger}=H$ makes Hadamard a Hermitian operator and so $H^{\dagger} H=H H^{\dagger}$. The operators that satsify $A A^{\dagger}=A^{\dagger} A$ are called normal operators.

Problem 2: Pauli matrices

Consider the four Pauli matrices:

$$
I, Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

a. Prove that for each Pauli matrix σ_{i} we have $\sigma_{i}^{2}=I$ and $\sigma_{i}^{\dagger}=\sigma_{i}$.

Solution: We'll only make the proof for the Y Pauli matrix but you should do the exact calculations on the rest. We have:

$$
Y^{2}=Y Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

We will also prove that Y satisfies $Y^{\dagger}=Y$ (i.e., is Hermitian):

$$
Y^{\dagger}=\left[\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)^{T}\right]^{*}=\left[\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)\right]^{*}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=Y
$$

b. Show that the Pauli matrices are unitary matrices.

Solution: We proved that for all Pauli matrices $\sigma_{i}^{\dagger}=\sigma_{i}$ and that $\sigma_{i}^{2}=I$. Clearly then, $\sigma_{i}^{2}=\sigma_{i} \sigma_{i}=\sigma_{i}^{\dagger} \sigma_{i}=\sigma_{i} \sigma_{i}^{\dagger}=I$.
c. Show that $Y=i X Z$.

Solution: We have:

$$
i X Z=i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=i\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=Y
$$

d. Show that $H X H=Z$ and $H Z H=X$.

Solution: First, we will prove that $H X H=Z$. We have:

$$
\begin{aligned}
& H X H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)=Z
\end{aligned}
$$

We can work in the exact same way for $H Z H=X$ or we can prove it in a different way. We proved that $H X H=Z$. We do a left and right multiplication with H and so we have $H H X H H=H Z H$. But $H^{2}=I$ and so $X=H Z H$.

Raul Garcia-Patron
Petros Wallden
Milos Prokop
Tutorial 1
IQC 2022-23

Problem 3: Measurement

Consider the two quantum states $|L\rangle$ and $|R\rangle$ of Problem 1 (these two quantum states are the eigenvalues of Pauli Y operator):

$$
\begin{aligned}
|R\rangle & =\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \\
|L\rangle & =\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
\end{aligned}
$$

a. Consider the general quantum state:

$$
|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle
$$

What are the probabilities of outcome $|R\rangle$ and $|L\rangle$ if we measure $|\psi\rangle$.
Solution. We start with the probability of measuring the outcome $|R\rangle$. If we measure the state $|\psi\rangle$, the probability of measuring $|R\rangle$ is given by:

$$
\begin{aligned}
\operatorname{Pr}[R]=|\langle R \mid \psi\rangle|^{2} & =\left|\frac{1}{\sqrt{2}}(\langle 0|-i\langle 1|)\left(\psi_{0}|0\rangle+\psi_{1}|1\rangle\right)\right|^{2} \\
& =\frac{1}{2}\left|\psi_{0}-i \psi_{1}\right|^{2}
\end{aligned}
$$

where we used $\langle 0 \mid 1\rangle=0$, since the vectors are orthogonal. Similarly, for the other probability we have:

$$
\begin{aligned}
\operatorname{Pr}[L]=|\langle L \mid \psi\rangle|^{2} & =\left|\frac{1}{\sqrt{2}}(\langle 0|+i\langle 1|)\left(\psi_{0}|0\rangle+\psi_{1}|1\rangle\right)\right|^{2} \\
& =\frac{1}{2}\left|\psi_{0}+i \psi_{1}\right|^{2}
\end{aligned}
$$

b. Show that the states $|L\rangle$ and $|R\rangle$ can be generated from $|0\rangle$ and $|1\rangle$ using the following circuit:

$$
|0 / 1\rangle-H-R_{\pi / 2}-|R / L\rangle
$$

where

$$
R_{\theta}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right)
$$

Solution:

$$
R_{\pi / 2} H|0\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{i}=|R\rangle
$$

$$
R_{\pi / 2} H|1\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-i}=|L\rangle
$$

c. What circuit will allow to implement a measurement on the $|L\rangle$ and $|R\rangle$ basis if our hardware only allows for measurement in the computational basis but Hadamard gates and R_{θ}.

Solution: In 1a) we saw that H is its own inverse and it can be verified that $R_{-\pi / 4}$ is inverse of $R_{\pi / 4}$ gate, i.e. $R_{-\pi / 4} R_{\pi / 4}=R_{\pi / 4} R_{-\pi / 4}=I$. Hence the circuit

$$
|R / L\rangle-R_{-\pi / 2}-H-|0 / 1\rangle
$$

can be used to map $|R\rangle$ and $|L\rangle$ into a computational basis where they can be distinguished by the measurement.

Problem 4: Outer-product and projectors

a. Show that the following matrices can be written as the out-product of the the $|+\rangle$ and

Solution: We express the states in the matrix form: $|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{1},\langle+|=$ $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{-1},\langle-|=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & -1\end{array}\right)$ and the result follows by direct computation.
b. Show that $P_{+}=|+\rangle\langle+|$and $P_{-}=|-\rangle\langle-|$are projectors by verifying the condition $P_{i}^{2}=P_{i}$ and they project on orthogonal basis as $P_{+} P_{-}=0$.
Solution: This can be checked either algebraically $P_{+}^{2}=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and similarly for P_{-}; or by using the braket notation which simplifies the proof even more: $P_{+}^{2}=(|+\rangle\langle+|)(|+\rangle\langle+|)=|+\rangle\langle+\mid+\rangle\langle+|=|+\rangle 1\langle+|=|+\rangle\langle+|=P_{+}$
$P_{-}^{2}=(|-\rangle\langle-|)(|-\rangle\langle-|)=|-\rangle\langle-\mid-\rangle\langle-|=|-\rangle 1\langle-|=|-\rangle\langle-|=P_{-}$. Orthogonality can also be checked the two different ways, the braket one being: $P_{+} P_{-}=(|+\rangle\langle+|)(|-\rangle\langle-|)=$

c. Check the completeness relation for measurement on the $\{|+\rangle,|-\rangle\}$ basis.

Solution: Since P_{+}and P_{-}are orthogonal projectors onto $\{|+\rangle,|-\rangle\}$basis, it remains to check if they satisfy the completeness relation to be valid projective measurement operators.

Raul Garcia-Patron
Petros Wallden
Milos Prokop
Tutorial 1
IQC 2022-23
October 5, 2023
I.e., it should hold that $P_{+}+P_{-}=|+\rangle\langle+|+|-\rangle\langle-|=I$ what can be checked by direct calculation:
d. Compute $P(+)=\| P_{+}|\psi\rangle \|^{2}$ and $P(-)=\| P_{-}|\psi\rangle \|^{2}$ for an arbitrary state $|\psi\rangle=\psi_{0}|0\rangle+$ $\psi_{1}|1\rangle$ and show that $P(+)+P(-)=1$, as expected.

Solution:

Using the definition of the norm $\||\psi\rangle \|=\sqrt{\langle\psi \mid \psi\rangle}$ and $\alpha^{*} \alpha=|\alpha|^{2}$ for any complex number α, we can show:

$$
\begin{aligned}
P(+) & =\| P_{+}|\psi\rangle\left\|^{2}=\right\||+\rangle\langle+|\left(\psi_{0}|0\rangle+\psi_{1}|1\rangle\right) \|^{2} \\
& =\| \psi_{0}|+\rangle\langle+\mid 0\rangle+\psi_{1}|+\rangle\langle+\mid 1\rangle \|^{2} \\
& =\| \frac{1}{\sqrt{2}} \psi_{0}|+\rangle+\frac{1}{\sqrt{2}} \psi_{1}|+\rangle \|^{2} \\
& =\| \frac{\psi_{0}+\psi_{1}}{\sqrt{2}}|+\rangle \|^{2} \\
& =\frac{\left|\psi_{0}+\psi_{1}\right|^{2}}{2} \||+\rangle \|^{2} \\
& =\frac{\left|\psi_{0}+\psi_{1}\right|^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(-) & =\| P_{-}|\psi\rangle\left\|^{2}=\right\||-\rangle\langle-|\left(\psi_{0}|0\rangle+\psi_{1}|1\rangle\right) \|^{2} \\
& =\| \psi_{0}|-\rangle\langle-\mid 0\rangle+\psi_{1}|-\rangle\langle-\mid 1\rangle \|^{2} \\
& =\| \frac{1}{\sqrt{2}} \psi_{0}|-\rangle-\frac{1}{\sqrt{2}} \psi_{1}|-\rangle \|^{2} \\
& =\| \frac{\psi_{0}-\psi_{1}}{2}|-\rangle \|^{2} \\
& =\frac{\left|\psi_{0}-\psi_{1}\right|^{2}}{2} \||-\rangle \|^{2} \\
& =\frac{\left|\psi_{0}-\psi_{1}\right|^{2}}{2}
\end{aligned}
$$

Raul Garcia-Patron
Petros Wallden
Tutorial 1
IQC 2022-23
Milos Prokop
Therefore

$$
\begin{aligned}
P(+)+P(-) & =\frac{\left|\psi_{0}+\psi_{1}\right|^{2}}{2}+\frac{\left|\psi_{0}-\psi_{1}\right|^{2}}{2}=\frac{1}{2}\left(\left(\psi_{0}+\psi_{1}\right)\left(\psi_{0}+\psi_{1}\right)^{*}+\left(\psi_{0}-\psi_{1}\right)\left(\psi_{0}-\psi_{1}\right)^{*}\right. \\
& =\frac{1}{2}\left(\left(\psi_{0}+\psi_{1}\right)\left(\psi_{0}^{*}+\psi_{1}^{*}\right)+\left(\psi_{0}-\psi_{1}\right)\left(\psi_{0}^{*}-\psi_{1}^{*}\right)\right. \\
& =\frac{1}{2}\left(\left|\psi_{0}\right|^{2}+\psi_{0} \psi_{1}^{*}+\psi_{0}^{*} \psi_{1}+\left|\psi_{1}\right|^{2}+\left|\psi_{0}\right|^{2}-\psi_{0} \psi_{1}^{*}-\psi_{0}^{*} \psi_{1}+\left|\psi_{1}\right|^{2}\right) \\
& =\frac{1}{2}\left(2\left|\psi_{0}\right|^{2}+2\left|\psi_{1}\right|^{2}\right) \\
& =\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2} \\
& =1
\end{aligned}
$$

