Problem 1: Quantum Operations

The Hadamard gate play a very prominent role in quantum computation:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

a. Prove that H is unitary, i.e. that it satisfies $U U^{\dagger}=U^{\dagger} U=I$.
b. Prove that H is it own inverse by showing $H^{2}=I$ where I is the identity operator.
c. Calculate the action of the operator on the vectors:

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1},|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1},|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Problem 2: Pauli matrices

Consider the four Pauli matrices:

$$
I, Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

a. Prove that for each Pauli matrix σ_{i} we have $\sigma_{i}^{2}=I$ and $\sigma_{i}^{\dagger}=\sigma_{i}$.
b. Show that the Pauli matrices are unitary matrices.
c. Show that $Y=i X Z$.
d. Show that $H X H=Z$ and $H Z H=X$.

Problem 3: Measurement

Consider the two quantum states $|L\rangle$ and $|R\rangle$ (eigenvalues of Pauli Y operator):

$$
\begin{aligned}
& |R\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \\
& |L\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
\end{aligned}
$$

a. Consider the general quantum state:

$$
|\psi\rangle=\psi_{0}|0\rangle+\psi_{1}|1\rangle
$$

What are the probabilities of outcome $|R\rangle$ and $|L\rangle$ if we measure $|\psi\rangle$.
b. Show that the states $|L\rangle$ and $|R\rangle$ can be generated from $|0\rangle$ and $|1\rangle$ using the following circuit:

Raul Garcia-Patron
Petros Wallden
Milos Prokop
Tutorial 1
IQC 2022-23

$$
|0 / 1\rangle-H-R_{\pi / 2}-|R / L\rangle
$$

where

$$
R_{\theta}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right)
$$

c. What circuit will allow to implement a measurement on the $|L\rangle$ and $|R\rangle$ basis if our hardware only allows for measurement in the computational basis but Hadamard gates and R_{θ}.

Problem 4: Outer-product and projectors

a. Show that the following matrices can be written as the out-product of the the $|+\rangle$ and

b. Show that $P_{+}=|+\rangle\langle+|$and $P_{-}=|-\rangle\langle-|$are projectors by verifying the condition $P_{i}^{2}=P_{i}$ and they project on orthogonal s as $P_{+} P_{-}=0$.
c. Check the completeness relation for the measurement on the $\{|+\rangle,|-\rangle\}$ basis.
d. Compute $P(+)=\| P_{+}|\psi\rangle \|^{2}$ and $P(-)=\| P_{-}|\psi\rangle \|^{2}$ for an arbitrary state $|\psi\rangle=\psi_{0}|0\rangle+$ $\psi_{1}|1\rangle$ satisfying the normalization condition and show that $P(+)+P(-)=1$, as expected.

