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Problem 1: Three-Qubit Parity Check

We want to perform an even/odd parity check on qubits 1, 2, 4. It’s easy to see that the
parity operator P = Z ⊗ Z ⊗ I ⊗ Z is both Hermitian and Unitary, so that it can both be
regarded as an observable and a quantum gate. Suppose we wish to measure the observable
P . That is, we desire to obtain a measurement result indicating one of the two eigenvalues,
and leaving an updated state after the measurement that is projected to its corresponding
eigenspace. We are going to show that the following circuit implements a measurement of P :

|[phase, ]|

|[phase, ]|

|[phase, ]|

|0⟩ H H

|ψ⟩

Z

|ψ′⟩Z

Z

a. Derive the action of the three-qubit parity operator P = Z⊗Z⊗I⊗Z on the computational
basis state |x1x2x3x4⟩. What are the eigenvalues of the operator P?

Solution: Recall that the state |x1x2x3x4⟩ corresponds to the tensor product:

|x1x2x3x4⟩ ≡ |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ |x4⟩

We can use the property:

P |x1x2x3x4⟩ = (Z ⊗ Z ⊗ I ⊗ Z) (|x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ |x4⟩)
= Z |x1⟩ ⊗ Z |x2⟩ ⊗ I |x3⟩ ⊗ Z |x4⟩ = (−1)x1 |x1⟩ ⊗ (−1)x2 |x2⟩ ⊗ |x3⟩ ⊗ (−1)x4 |x4⟩

=⇒ P |x1x2x3x4⟩ = (−1)x1+x2+x4 |x1x2x3x4⟩

We can see that when P acts on a computational basis, it is scaled by a factor of −1 or +1
depending on the bits xi. This means that the compuational basis states are the eigenvectors
of P with eigenvalues ±1.

b. Derive the global state right before the measurement of the upper-qubit when the input
state reads |0⟩ ⊗ |ψ⟩, where |ψ⟩ =

∑
x∈{0,1}4 γx|x⟩ is a four qubit arbitrary input state and x

is a four bit string.

Solution: First of all, we are going to divide the quantum circuits into subsequent steps and
calculate the composite state in each one of them.
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The initial state of the composite system of 5 qubits is:

|ψ⟩0 = |0⟩ ⊗ |ψ⟩ =
∑

x∈{0,1}4
γx |0⟩ |x⟩

Step 1: On the first step, we act with the Hadamard operator on the first qubit and get:

(H ⊗ I) |ψ⟩0 =
∑

x∈{0,1}4
γxH |0⟩ |x⟩ =

∑
x∈{0,1}4

γx
1√
2
(|0⟩+ |1⟩) |x⟩

∑
x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ |x⟩

and so the state |ψ⟩1 at step 1 is:

|ψ⟩1 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ |x⟩

Step 2: On the second step, we act with the controlled-P operator and get:

CP |ψ⟩1 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩P |x⟩

Note that x is the bitstring x1x2x3x4. Thus, by using the answer of question (a.) we get that
the state |ψ⟩2 at step 2 is:

|ψ⟩2 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ (−1)x1+x2+x4 |x⟩

=
∑

x1+x2+x4=even

γx |+⟩ |x⟩+
∑

x1+x2+x4=odd

γx |−⟩ |x⟩

2



Raul Garcia-Patron
Petros Wallden
Ioannis Kolotouros Tutorial 5

IQC 2022-23
November 9, 2023

Step 3: On the third step, we act again with the Hadamard operator on the first qubit and
get:

|ψ⟩3 =
∑

x1+x2+x4=even

γx |0⟩ |x⟩+
∑

x1+x2+x4=odd

γx |1⟩ |x⟩

|ψ⟩3 = |0⟩ ⊗

( ∑
x1+x2+x4=even

γx |x⟩

)
+ |1⟩ ⊗

( ∑
x1+x2+x4=odd

γx |x⟩

)

c. Using the rules of partial measurement, show that the measurement of the upper-qubit
projects the state of the lower four qubits to its odd or even parity subspaces, depending of
the outcome being 0 or 1.

Solution: The partial measurement of the first qubit can be described as the linear operator
Pi⊗ I = |i⟩ ⟨i|⊗ I with i ∈ {0, 1}. If we perform the measurement on the first qubit and find
it in the |0⟩ state, then the system after the measurement will be in the state:

|ψ⟩ = P0 ⊗ I |ψ⟩3
||P0 ⊗ I |ψ⟩3 ||

= |0⟩ ⊗ 1

(
∑

x1+x2+x4=even |γx|2)1/2

( ∑
x1+x2+x4=even

γx |x⟩

)

On the other hand, if we measure it to be in the state |1⟩ then the state of the system after
the measurement will be:

|ψ⟩ = P1 ⊗ I |ψ⟩3
||P1 ⊗ I |ψ⟩3 ||

= |1⟩ ⊗ 1

(
∑

x1+x2+x4=odd |γx|2)1/2

( ∑
x1+x2+x4=odd

γx |x⟩

)

d. Prove that the two circuits below are equivalent:

|0⟩ H H

Z

= |0⟩

Solution: Consider the second qubit to be in the general state |ψ⟩ = a |0⟩ + b |1⟩. We split
the first circuit into three parts.

|0⟩ H H

Z

1 2 3

The initial state of the composite system is:

|ψ⟩0 = a |00⟩+ b |01⟩
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Step 1:

|ψ⟩1 = (H ⊗ I) |ψ⟩0 =
a√
2
(|00⟩+ |10⟩) + b√

2
(|01⟩+ |11⟩)

Step 2:

|ψ⟩2 = CZ |ψ⟩1 =
a√
2
(|00⟩+ |10⟩) + b√

2
(|01⟩ − |11⟩)

= a |+⟩ |0⟩+ b |−⟩ |1⟩

Step 3:

|ψ⟩3 = (H ⊗ I) |ψ⟩2 = a |0⟩ |0⟩+ b |1⟩ |1⟩

We consider again the same input on the second circuit:

|0⟩
1

We can see that if we start with the same input:

|ψ⟩0 = a |00⟩+ b |01⟩

then after the action of the controlled-NOT with the control being the second qubit we have:

|ψ⟩1 = a |00⟩+ b |11⟩

We can thus conclude that the two circuits are equivalent.

e. Prove that we can achieve the same result with the circuit:

|0⟩

|ψ⟩ |ψ′⟩

Solution: In the same manner, we break the circuit into subsequent steps:
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The initial state of the system is:

|ψ⟩0 = |0⟩ ⊗ |ψ⟩ =
∑

x∈{0,1}4
γx |0⟩ |x⟩

Step 1:

|ψ⟩1 =
∑

x∈{0,1}4
γx |0⊕ x1⟩ |x⟩

Step 2:

|ψ⟩2 =
∑

x∈{0,1}4
γx |0⊕ x1 ⊕ x2⟩ |x⟩

Step 3:

|ψ⟩3 =
∑

x∈{0,1}4
γx |0⊕ x1 ⊕ x2 ⊕ x4⟩ |x⟩

=⇒ |ψ⟩3 = |0⟩ ⊗

( ∑
x1+x2+x4=even

γx |x⟩

)
+ |1⟩ ⊗

( ∑
x1+x2+x4=odd

γx |x⟩

)

We can see that in both cases the output state is the same. We can thus conclude that the
two circuits are equivalent.

Problem 2: Syndrome Measurement

Consider the following quantum error correcting circuit:
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a |0⟩+ b |1⟩

|0⟩

|0⟩

|0⟩

|0⟩

|ψ1⟩

where the first measurement is a computational basis measurement of Z1⊗Z2, and the second
measurement is a computational measurement of Z2⊗Z3. The blue box is hiding a (possible)
error that has occurred, which will be nothing (identity) or a bit-flip error X that acts on
any one of the three qubits. The pink box is hiding the corresponding correction.

a. What is the state |ψ1⟩?
Solution: The state is: |ψ1⟩ = a |000⟩+ b |111⟩
b. Assume that the outcomes of the measurements are: s1 = +1 (for the upper detector
measurement) and s2 = −1 (for the lower detector measurement).

1. What does this indicate about the parity of the qubits just before the pink box?

2. Was an error occurring? If yes, where?

3. What was the associated correction operation?

Solution: Since s1 = +1 and s2 = −1, that means that we have the following projectors:
P+1
1,2 = |00⟩12 ⟨00|12 + |11⟩12 ⟨11|12 and

P−1
2,3 = |01⟩23 ⟨01|23 + |10⟩23 ⟨10|23. These will help us to answer the sub-questions:

i) Since we have P+1
1,2 for the first and second qubit, this means that they have even parity

and therefore that they have the same value. Similarly, since we have P−1
2,3 for the

second and third qubit, this means that they have odd parity, i.e. different values.

ii) In order to find Pi, the overall projector, we need to do the following calculation:

(P+1
1,2 ⊗ I3)(I1 ⊗ P−1

2,3 )

=[(|00⟩12 ⟨00|12 + |11⟩12 ⟨11|12)⊗ I3][I1 ⊗ (|01⟩23 ⟨01|23 + |10⟩23 ⟨10|23)]
=(|00⟩12 ⟨00|12 + |11⟩12 ⟨11|12)I1 ⊗ I3(|01⟩23 ⟨01|23 + |10⟩23 ⟨10|23)
= |001⟩123 ⟨001|123 + |110⟩123 ⟨110|123

P3 = |001⟩ ⟨001|+ |110⟩ ⟨110|
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iii) Since the overall Projector is P3, this means that there is a bit-flip error on the third
qubit, and therefore the blue box is hiding an X gate on the third qubit, and likewise
the recovery gate (under the pink box) will be an X gate on the third qubit, to correct
the bit-flip error.

c. Why is it so important to check the parity of the qubits rather than measuring their
outputs directly?

Solution: It is important to check the parity of the qubits to preserve the coherence of the
system. We do not want the logical qubit encoded in the larger physical quantum state to
collapse, as otherwise it would change from its initial state we want to preserve. We want
to find enough partial information on the state of the large physical register in a clever way
that it does not perturb the single logical qubit encoded into it.

Problem 3: Shor’s 9-Qubit Code

Shor’s 9 qubit code allows us to encode our state in 9 qubits and determine whether any
arbitrary single qubit error has occured, and where. Consider the following circuit, as seen
in the lectures:

EZ

EX

EX

EX

RX

RX

RX

RZ

|ψi⟩

|ψ1⟩

where EZ and EX are the encoding circuits, and RX and RZ are the recovery circuits. The
orange box in the circuit signifies a single qubit error occuring on the 7th qubit. Assuming
that the initial state is |ψi⟩ = a |0⟩+ b |1⟩,
a. What is the state |ψ⟩1?
Solution: The state after the EZ encoding is:
|ψ1⟩ = α |+++⟩+ β |− − −⟩
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b. What is the state after the error has occurred when the error in the orange box is:

1. an X error.

2. a Z error.

3. an XZ error.

Solution: Recall that a bit-flip X error takes |0⟩ → |1⟩, and |1⟩ → |0⟩ and a phase-flip Z
error takes |+⟩ → |−⟩ and |−⟩ → |+⟩. XZ = [ 0 −1

1 0 ], which means that the XZ error takes
|0⟩ → |1⟩ and |1⟩ → − |0⟩, incidentally in the lectures we were told that Y = iXZ and we
can clearly see that XZ = 1

i
Y . Let us also deduce the state after the bit-flip encodings EX ,

wich we call |ψ2⟩:

|ψ2⟩ =
1√
23
(α(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)+

β(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩))

We call our state after applying the single qubit error on the 7th qubit |ψ3⟩ and we have:

i) X error:
|ψ3⟩ = 1√

23
(α(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|100⟩ + |011⟩) + β(|000⟩ − |111⟩)(|000⟩ −

|111⟩)(|100⟩ − |011⟩))

ii) Z error:
|ψ3⟩ = 1√

23
(α(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩− |111⟩) + β(|000⟩ − |111⟩)(|000⟩ −

|111⟩)(|000⟩+ |111⟩))

iii) XZ error:
|ψ3⟩ = 1√

23
(α(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|100⟩− |011⟩) + β(|000⟩ − |111⟩)(|000⟩ −

|111⟩)(|100⟩+ |011⟩))

c. In case 1,2 and 3 determine what the syndromes returned by the measurements will be.

Solution: As discussed in the lectures, there are eight syndromes with outcomes {s1, · · · , s8}, si ∈
{−1,+1} and we will recall them here:

With the above table, we must deduce whether the syndrome si is equal to +1 or −1 in each
of the cases.

i) When we apply theX error on qubit 7 the outcomes will be: {+1,+1,+1,+1,−1,+1,+1,+1}
since there is only odd parity between qubits 7 and 8.

ii) When we apply the Z error on qubit 7 the outcomes will be: {+1,+1,+1,+1,+1,+1,+1,−1}
since we have a phase-flip error in the last triplet of qubits which changes the X-parity
captured in the measurement of the second-half of the syndromes, s8.
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Syndrome Label
Z1 ⊗ Z2 s1
Z2 ⊗ Z3 s2
Z4 ⊗ Z5 s3
Z5 ⊗ Z6 s4
Z7 ⊗ Z8 s5
Z8 ⊗ Z9 s6

X1 ⊗X2 ⊗X3 ⊗X4 ⊗X5 ⊗X6 s7
X4 ⊗X5 ⊗X6 ⊗X7 ⊗X8 ⊗X9 s8

iii) When we apply the XZ error on qubit 7 we have both the syndromes from the X-
recovery part and the syndromes from the Z-recovery part in part i) and ii), and
therefore the outcomes are: {+1,+1,+1,+1,−1,+1,+1,−1}.

d. For the XZ error occuring, what is the state after the layer of bit-flip decoding? How
does this lead to the correct state during the phase-flip decoding, where the parities of the
operators X1 ⊗ ...⊗X6 and X4 ⊗ ...⊗X9 are measured?

Solution: For the case where the XZ error occurs, we have the state:

|ψ3⟩ =
1√
23
(α(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|100⟩− |011⟩)+

β(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|100⟩+ |011⟩))
and after the first recovery process RX , the bit-flip error will be detected, and an X gate on
qubit 7 will be applied such that the bit-flip error is corrected, and we have:

|ψ3⟩′ =
1√
23
(α(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩ − |111⟩)+

β(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩+ |111⟩))
Then we have the recovery process RZ where the phase-flip error will be detected in the last
triplet of qubits, and a Z gate on any of the qubits 7, 8, 9 is applied such that the phase-flip
error is corrected, and we have:

|ψ3⟩′′ =
1√
23
(α(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)+

β(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩− |111⟩))
which is exactly the state encoding we had at the beginning.

e. Suppose that instead an X error happens on qubit 1 and a Z error on qubit 4. Would
our quantum error correcting code detect and correct both errors?

Solution: Yes. At the first recovery process the bit-flip error on the first qubit will be
detected and will be corrected. Then, at the second recovery process, the phase flip error
on qubit 4 will be detected and corrected. However, Shor’s 9 qubit code cannot correct any
arbitrary two qubit error.
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