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Problem 1: Quantum Fourier Transform

As you have seen in the lectures, we can represent any integer z in its binary form as:
Z = 21292 ...2n
where 21, 29, ..., 2, are such so that:

2=2,2" b+ 2 4

a. How many qubits at least would we need to encode the integer states |14) and |9)? What
is their binary representation when using qubits to encode the integers?

Solution: In order to represent an integer state | N), one would require at least n = [log(N +
1)] qubits. This implies that for both cases we require 4 qubits. The binary representation
of these four-qubit integer states is:

|14) = |1110)
|9) = |1001)
b. Recall that: R 2
L, Arl m
0.zlzl+1...sz§+2—;+"'+W

Calculate:
1. 230.212923, 220.21 2023 and 20.21 2023, where z; € {0, 1}.
2. 22001523 where j; € {0,1}.

Solution: We start by writing down the expression for 0.z2923:

z z zZ
0.212223 = 51 -+ ZQ + §3

Then it is easy to calculate the expressions above. For the first case we have:
230.21 2025 = 421 + 229 + 23

220.212223 = 22’1 + 29 + ﬁ

2

Z9 z3

20. = — 4+ —
Z12923 = 21 + 5 + 1

For the second case:

27Ti220.j1j2j3 _ eQﬂi(2j1+j2+j3/2) 27ri(2j1+j2) 27T’ij3/2

=e e — 627”0.]3’

e

where in the second equality we used the fact that 2j; 4+ jo is an integer and therefore
627Ti(2j1+]'2) =1.

c. Now consider the quantum Fourier circuit for three qubits:
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—H/SHT

with S and T being the gates:

1 0 10 1 0
S = (0 6i7r/2) - <0 Z) aT_ (O 6irr/4)

Suppose that we input the state |j) = |71j273). What will be the output state?

Solution: We start as usual by dividing the quantum circuit into subsequent steps:
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Initially, the system is in the state:

U)o = |j1j2da)
Then we act with the Hadamard operator on the first qubit and use the fact that €77t is
+1if j; =0 and —1 if j; = 1. Thus the state at step 1 is transformed to:

1 L
901 = 57510} + €507 1) Ljaj)

Recall that the unitary operator Ry is defined as:

1 0
Ry, = (0 627Ti/2k)

It’s easy to see that both S and T are special cases of the operator R, for two different
choices of k. S corresponds to Ry while T' corresponds to Rs.

On the next step, applying the S operator on the first qubit controlled by the second qubits
produces the state:

1 710.5 T j . . 1 710.517 . .
[0}y = 575(10) + €002 1)) ajs) = 5775(10) + €702 (1) [jais)
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Next, we perform the controlled-T" operation and so we get:

1 1

[}y = Gz (10) + 2002200 1) o) = 775(10) + 7079275 1)) |ags)

If we work with the exact same way for the rest of the steps we will get:
Step 4:
1 o L
[0}y = 5(10) + €272 1) ([0) + €707) |s)

Step 5:
[¥)y = 5(10) + TN 1))(|0) 4 270925 | o)

Step 0: |
s = g7 (10) + = [1)([0) 4+ ¢27055) (0] + 270 1)

At the final step, we swap the state of the first and third qubit and recover the quantum
Fourier transformation:

[0}y = 33 (10) + €705 [1))(|0) + €*T022)([0) 4 0 1))

Problem 2: Order-Finding

For two positive integers x and N with x < N the order of x modulo N is defined to be the
least positive integer such that:
' =1 mod N

a. Show that for x = 2 and N = 5 we have r = 4.

Solution: It’s easy to see that for r = 4:
20 =3 x5+1,

which implies 2 = 1 mod 5. Similarly, one can show that 23 =3 mod 5 and 2?2 =4 mod 5.
Therefore, r = 4 is the least integer such that 2* =1 mod 5.

Note: Remark that modular exponentiation is a periodic function of period r. You can
check that for x = 3 we also obtain r = 4, but for x = 4 we have r = 2, the latest can be
easily derived from the case of x = 2.

b. Now consider the transformation U, which acts on the computational basis states as
follows:
Ugly) = |ry mod N)

Prove that:
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1. Uanz’ = Uxm’

2. Uy = Ux_l = UQCJr
3. U,Ul = UlU, = I, which proves it is an unitary transformation.

4. Ul = I where r is the period of  modulo N.

Solution: We start with the first property, which result from the associativity of the multi-
plication of integer mod N. We have:

UUp |y) =U, |2’y mod N) = |zz'y mod N)
User |y) = |z2'y  mod N)

and thus:
UxU$’ = Ux.t’ = Uz'U:c

We continue with the second property:
Up—1U, ly) = Up-1 |zy  mod N) = |y)

and thus:
Uy = U;l

Now for the second part of the second property:
(y|UlU, |y) = (yx mod N|yz mod N) =1
and thus UlU, = I and so the inverse of U, is U}, i.e.:

Uy =Ut=U!

The third property follows immediately from the previous property as U, Ul = U,U;t = I =
U;UI and thus U, is a unitary operator.

Then for the final property we have:

U U, ... U y) = |2"y mod N) = |y)
—_———

T

and so we proved that:
U =1

c. Show that the states:

ﬁ
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—

_ 2misk k

e |2¥ mod N)

=
i/
Il
Sl
ﬁ
Eo
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0
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for integer 0 < s < r — 1 are eigenstates of U,. What is their corresponding eigenvalues?

Solution: If we act with U, on the states |us) we get:
U lus) = Z U, |z mod N)

-1
27rzsk 27rzs(k: 27is(k’—1) ’
E 2" mod N) \/_ g |z¥  mod N)
k k'=1

where in the last step we switched the variable k with the variable &' = k£ + 1. If we continue
with the calculation we have:

U, |Us> _ 27rzs/r\/_ Z 27”5’“ 2 mod N)

k'=1

But recall that r is the order of x modulo N and so " =1 mod N. It’s easy to see then
that the sum in the expression can be replaced to:

r r—1
>
k'=1 k=0

as it correspond only to a reordering of the same sum (a shift to the left of a closed cycle).

Thus, we can conclude that |u,) is an eigenstate of the operator U, with eigenvalue e*7%/":

U |us> — 271'18/7“ |us>

d. As you can see preparing the state |us) requires that we know r in advance. Fortunately
there is clever observation which circumvents the problems of preparing |u,). Show that:

1.
r—1
E e—2msk/r _ r5k70
5=0

2.

r—1
1 )
_ e27rzsk/r |u8> _ |$k mod N>
= § :
which has as special case when k£ = 0:

22l = ).
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which is a trivial state to generate. This opens the door to applying quantum phase-
estimation to sample from ¢ = s/r, which later leads to a guess of r as explained in the
lecture on Shor’s algorithm.

Solution: Consider the first expression and let £k = 0. It’s easy to see that we have a sum
of r terms, all equal to the identity and thus:

r—1
Z€—2Trisk/r —rifk=0

s=0
Now consider k # 0. The sum then corresponds to a geometric series which is equal to:
r—1 —2mik
Z e—27risk/r _ l—e -0
1 — e—2mik/r
s=0
for every k € Z with k # 0. Thus we can conclude that:

r—1
§ 6—27rzsk/r — 7,5]970

s=0

For the second expression we have:

1 r—1 1 r—1 1 r—1 -
- Z 2misk/r | > _ Z 2misk/r_~ Z — 2misk. | K d N>
(& u € € i mo
\/F 5=0 ) \/F s=0 \/F k'=0

r—1 r—1 r—1
1 - / 1 /
= — E E 2 isk=k0/m 1k mod N) = = E r0ok_r |2 mod N)
" =0 k=0 i

where in the last equality we used the result from expression 1. It’s trivial to see that
dok—k' = Op» and the sum over k' contributes only when &' = k. Thus:

r—1
1 .
N E_; T ug) = |a* mod N) .
The case k = 1 is only a corollary of this last result, leading to the input state |1) used in
the order finding algorithm.

e. If we wanted to apply a phase estimation procedure we must have efficient procedures to
implement a controlled-U?" operation for any integer j. Given an integer number z, propose
a technique to compute 22" that scales linearly in k.

Solution: if we want to compute 22" an inefficient approach is to multiply 2 times z. A

more efficient approach is to square iteratively, i.e., we apply the function y> mod N k times

to the input z. It is easy to see then that we get the series z2, x4, e 22", Because the
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multiplication is mod N, the memory register does not need to increase, as it will never be
larger than N.

f. Assuming that we are given an unitary S such that implements S|z) = |z*> mod N) that
needs O(L?) gates, where L = [log N1, i.e., the size of the register. How many gates we will
be needed to implement |z) — |22 mod N)?

Solution: We are given that the unitary S is such that implements S|z) = |z* mod N)
using O(L?) gates. Clearly if we want to implement |z) — [22° mod N) we need to apply S
k times, which lead to an asymptotic scaling O(kL?) of number of gates. Because in phase
estimation we need to implement up to U 2" where k € {0,2L + 1}, it is easy to see that need
O(L?) gates.



