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Problem 1: Quantum Fourier Transform

As you have seen in the lectures, we can represent any integer z in its binary form as:

z = z1z2 . . . zn

where z1, z2, . . . , zn are such so that:

z = zn2
n−1 + . . .+ z22

1 + z1

a. How many qubits at least would we need to encode the integer states |14⟩ and |9⟩? What
is their binary representation when using qubits to encode the integers?

Solution: In order to represent an integer state |N⟩, one would require at least n = ⌈log(N+
1)⌉ qubits. This implies that for both cases we require 4 qubits. The binary representation
of these four-qubit integer states is:

|14⟩ = |1110⟩
|9⟩ = |1001⟩

b. Recall that:
0.zlzl+1 . . . zm ≡ zl

2
+
zl+1

22
+ · · ·+ zm

2m−l+1

Calculate:

1. 230.z1z2z3, 2
20.z1z2z3 and 20.z1z2z3, where zi ∈ {0, 1}.

2. e2πi2
20.j1j2j3 where ji ∈ {0, 1}.

Solution: We start by writing down the expression for 0.z1z2z3:

0.z1z2z3 =
z1
2
+
z2
4
+
z3
8

Then it is easy to calculate the expressions above. For the first case we have:

230.z1z2z3 = 4z1 + 2z2 + z3

220.z1z2z3 = 2z1 + z2 +
z3
2

20.z1z2z3 = z1 +
z2
2
+
z3
4

For the second case:

e2πi2
20.j1j2j3 = e2πi(2j1+j2+j3/2) = e2πi(2j1+j2)e2πij3/2 = e2πi0.j3 ,

where in the second equality we used the fact that 2j1 + j2 is an integer and therefore
e2πi(2j1+j2) = 1.

c. Now consider the quantum Fourier circuit for three qubits:
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H S T

H S

H

with S and T being the gates:

S =

(
1 0
0 eiπ/2

)
=

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
Suppose that we input the state |j⟩ = |j1j2j3⟩. What will be the output state?

Solution: We start as usual by dividing the quantum circuit into subsequent steps:

H S T

H S

H

1 2 3 4 5 6 7

Initially, the system is in the state:

|ψ⟩0 = |j1j2j3⟩

Then we act with the Hadamard operator on the first qubit and use the fact that e2πi0.j1 is
+1 if j1 = 0 and −1 if j1 = 1. Thus the state at step 1 is transformed to:

|ψ⟩1 =
1

21/2
(|0⟩+ e2πi0.j1 |1⟩) |j2j3⟩

Recall that the unitary operator Rk is defined as:

Rk =

(
1 0

0 e2πi/2
k

)
It’s easy to see that both S and T are special cases of the operator Rk for two different
choices of k. S corresponds to R2 while T corresponds to R3.

On the next step, applying the S operator on the first qubit controlled by the second qubits
produces the state:

|ψ⟩2 =
1

21/2
(|0⟩+ e2πi0.j1e2πi0.0j2 |1⟩) |j2j3⟩ =

1

21/2
(|0⟩+ e2πi0.j1j2 |1⟩) |j2j3⟩
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Next, we perform the controlled-T operation and so we get:

|ψ⟩3 =
1

21/2
(|0⟩+ e2πi0.j1j2e2πi0.00j3 |1⟩) |j2j3⟩ =

1

21/2
(|0⟩+ e2πi0.j1j2j3 |1⟩) |j2j3⟩

If we work with the exact same way for the rest of the steps we will get:

Step 4:

|ψ⟩4 =
1

2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2) |j3⟩

Step 5:

|ψ⟩4 =
1

2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2j3) |j3⟩

Step 6:

|ψ⟩4 =
1

23/2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2j3)(|0⟩+ e2πi0.j3 |1⟩)

At the final step, we swap the state of the first and third qubit and recover the quantum
Fourier transformation:

|ψ⟩4 =
1

23/2
(|0⟩+ e2πi0.j3 |1⟩)(|0⟩+ e2πi0.j2j3)(|0⟩+ e2πi0.j1j2j3 |1⟩)

Problem 2: Order-Finding

For two positive integers x and N with x < N the order of x modulo N is defined to be the
least positive integer such that:

xr = 1 mod N

a. Show that for x = 2 and N = 5 we have r = 4.

Solution: It’s easy to see that for r = 4:

24 = 3× 5 + 1,

which implies 24 = 1 mod 5. Similarly, one can show that 23 = 3 mod 5 and 22 = 4 mod 5.
Therefore, r = 4 is the least integer such that 24 = 1 mod 5.

Note: Remark that modular exponentiation is a periodic function of period r. You can
check that for x = 3 we also obtain r = 4, but for x = 4 we have r = 2, the latest can be
easily derived from the case of x = 2.

b. Now consider the transformation Ux which acts on the computational basis states as
follows:

Ux |y⟩ ≡ |xy mod N⟩

Prove that:
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1. UxUx′ = Uxx′

2. Ux−1 = U−1
x = U †

x.

3. UxU
†
x = U †

xUx = I, which proves it is an unitary transformation.

4. U r
x = I where r is the period of x modulo N .

Solution: We start with the first property, which result from the associativity of the multi-
plication of integer mod N . We have:

UxUx′ |y⟩ = Ux |x′y mod N⟩ = |xx′y mod N⟩
Uxx′ |y⟩ = |xx′y mod N⟩

and thus:
UxUx′ = Uxx′ = Ux′Ux

We continue with the second property:

Ux−1Ux |y⟩ = Ux−1 |xy mod N⟩ = |y⟩

and thus:
Ux−1 = U−1

x

Now for the second part of the second property:

⟨y|U †
xUx |y⟩ = ⟨yx mod N |yx mod N⟩ = 1

and thus U †
xUx = I and so the inverse of Ux is U †

x, i.e.:

Ux−1 = U−1
x = U †

x

The third property follows immediately from the previous property as UxU
†
x = UxU

−1
x = I =

U †
xUx and thus Ux is a unitary operator.

Then for the final property we have:

UxUx . . . Ux︸ ︷︷ ︸
r

|y⟩ = |xry mod N⟩ = |y⟩

and so we proved that:
U r
x = I

c. Show that the states:

|us⟩ ≡
1√
r

r−1∑
k=0

e−
2πisk

r |xk mod N⟩
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for integer 0 ≤ s ≤ r − 1 are eigenstates of Ux. What is their corresponding eigenvalues?

Solution: If we act with Ux on the states |us⟩ we get:

Ux |us⟩ =
1√
r

r−1∑
k=0

e−
2πisk

r Ux |xk mod N⟩

=
1√
r

r−1∑
k=0

e−
2πisk

r |xk+1 mod N⟩ = 1√
r

r∑
k′=1

e−
2πis(k′−1)

r |xk′ mod N⟩

where in the last step we switched the variable k with the variable k′ = k+1. If we continue
with the calculation we have:

Ux |us⟩ = e2πis/r
1√
r

r∑
k′=1

e−
2πisk′

r |xk′ mod N⟩

But recall that r is the order of x modulo N and so xr = 1 mod N . It’s easy to see then
that the sum in the expression can be replaced to:

r∑
k′=1

→
r−1∑
k=0

,

as it correspond only to a reordering of the same sum (a shift to the left of a closed cycle).

Thus, we can conclude that |us⟩ is an eigenstate of the operator Ux with eigenvalue e2πis/r:

Ux |us⟩ = e2πis/r |us⟩

d. As you can see preparing the state |us⟩ requires that we know r in advance. Fortunately
there is clever observation which circumvents the problems of preparing |us⟩. Show that:

1.
r−1∑
s=0

e−2πisk/r = rδk,0

2.
1√
r

r−1∑
s=0

e2πisk/r |us⟩ = |xk mod N⟩

which has as special case when k = 0:

1√
r

r−1∑
s=0

|us⟩ = |1⟩ ,
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which is a trivial state to generate. This opens the door to applying quantum phase-
estimation to sample from φ = s/r, which later leads to a guess of r as explained in the
lecture on Shor’s algorithm.

Solution: Consider the first expression and let k = 0. It’s easy to see that we have a sum
of r terms, all equal to the identity and thus:

r−1∑
s=0

e−2πisk/r = r if k = 0

Now consider k ̸= 0. The sum then corresponds to a geometric series which is equal to:

r−1∑
s=0

e−2πisk/r =
1− e−2πik

1− e−2πik/r
= 0

for every k ∈ Z with k ̸= 0. Thus we can conclude that:

r−1∑
s=0

e−2πisk/r = rδk,0

For the second expression we have:

1√
r

r−1∑
s=0

e2πisk/r |us⟩ =
1√
r

r−1∑
s=0

[
e2πisk/r

1√
r

r−1∑
k′=0

e−
2πisk′

r |xk′ mod N⟩

]

=
1

r

r−1∑
s=0

r−1∑
k′=0

e2πis(k−k′)/r |xk mod N⟩ = 1

r

r−1∑
k′=0

rδ0,k−k′ |xk
′

mod N⟩

where in the last equality we used the result from expression 1. It’s trivial to see that
δ0,k−k′ = δk,k′ and the sum over k′ contributes only when k′ = k. Thus:

1√
r

r−1∑
s=0

e2πisk/r |us⟩ = |xk mod N⟩ .

The case k = 1 is only a corollary of this last result, leading to the input state |1⟩ used in
the order finding algorithm.

e. If we wanted to apply a phase estimation procedure we must have efficient procedures to
implement a controlled-U2j operation for any integer j. Given an integer number x, propose
a technique to compute x2

k
that scales linearly in k.

Solution: if we want to compute x2
k
an inefficient approach is to multiply 2k times x. A

more efficient approach is to square iteratively, i.e., we apply the function y2 mod N k times
to the input x. It is easy to see then that we get the series x2, x4, x2

3
,..., x2

k
. Because the
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multiplication is mod N , the memory register does not need to increase, as it will never be
larger than N .

f. Assuming that we are given an unitary S such that implements S|x⟩ = |x2 mod N⟩ that
needs O(L2) gates, where L = ⌈logN⌉, i.e., the size of the register. How many gates we will
be needed to implement |x⟩ → |x2k mod N⟩?
Solution: We are given that the unitary S is such that implements S|x⟩ = |x2 mod N⟩
using O(L2) gates. Clearly if we want to implement |x⟩ → |x2k mod N⟩ we need to apply S
k times, which lead to an asymptotic scaling O(kL2) of number of gates. Because in phase
estimation we need to implement up to U2k where k ∈ {0, 2L+1}, it is easy to see that need
O(L3) gates.
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