Raul Garcia-Patron
Petros Wallden
Milos Prokop

Tutorial 6

IQC 2023-24

Problem 1: Quantum Fourier Transform

As you have seen in the lectures, we can represent any integer z in its binary form as:

$$
z=z_{1} z_{2} \ldots z_{n}
$$

where $z_{1}, z_{2}, \ldots, z_{n}$ are such so that:

$$
z=z_{n} 2^{n-1}+\ldots+z_{2} 2^{1}+z_{1}
$$

a. How many qubits at least would we need to encode the integer states $|14\rangle$ and $|9\rangle$? What is their binary representation when using qubits to encode the integers?
Solution: In order to represent an integer state $|N\rangle$, one would require at least $n=\lceil\log (N+$ $1)\rceil$ qubits. This implies that for both cases we require 4 qubits. The binary representation of these four-qubit integer states is:

$$
\begin{gathered}
|14\rangle=|1110\rangle \\
|9\rangle=|1001\rangle
\end{gathered}
$$

b. Recall that:

$$
0 . z_{l} z_{l+1} \ldots z_{m} \equiv \frac{z_{l}}{2}+\frac{z_{l+1}}{2^{2}}+\cdots+\frac{z_{m}}{2^{m-l+1}}
$$

Calculate:

1. $2^{3} 0 . z_{1} z_{2} z_{3}, 2^{2} 0 . z_{1} z_{2} z_{3}$ and $20 . z_{1} z_{2} z_{3}$, where $z_{i} \in\{0,1\}$.
2. $e^{2 \pi i 2^{2} 0 . j_{1} j_{2} j_{3}}$ where $j_{i} \in\{0,1\}$.

Solution: We start by writing down the expression for $0 . z_{1} z_{2} z_{3}$:

$$
0 . z_{1} z_{2} z_{3}=\frac{z_{1}}{2}+\frac{z_{2}}{4}+\frac{z_{3}}{8}
$$

Then it is easy to calculate the expressions above. For the first case we have:

$$
\begin{aligned}
2^{3} 0 . z_{1} z_{2} z_{3} & =4 z_{1}+2 z_{2}+z_{3} \\
2^{2} 0 . z_{1} z_{2} z_{3} & =2 z_{1}+z_{2}+\frac{z_{3}}{2} \\
20 . z_{1} z_{2} z_{3} & =z_{1}+\frac{z_{2}}{2}+\frac{z_{3}}{4}
\end{aligned}
$$

For the second case:

$$
e^{2 \pi i 2^{2} 0 . j_{1} j_{2} j_{3}}=e^{2 \pi i\left(2 j_{1}+j_{2}+j_{3} / 2\right)}=e^{2 \pi i\left(2 j_{1}+j_{2}\right)} e^{2 \pi i j_{3} / 2}=e^{2 \pi i 0 . j_{3}},
$$

where in the second equality we used the fact that $2 j_{1}+j_{2}$ is an integer and therefore $e^{2 \pi i\left(2 j_{1}+j_{2}\right)}=1$.
c. Now consider the quantum Fourier circuit for three qubits:

with S and T being the gates:

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right), T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

Suppose that we input the state $|j\rangle=\left|j_{1} j_{2} j_{3}\right\rangle$. What will be the output state?
Solution: We start as usual by dividing the quantum circuit into subsequent steps:

Initially, the system is in the state:

$$
|\psi\rangle_{0}=\left|j_{1} j_{2} j_{3}\right\rangle
$$

Then we act with the Hadamard operator on the first qubit and use the fact that $e^{2 \pi i 0 . j_{1}}$ is +1 if $j_{1}=0$ and -1 if $j_{1}=1$. Thus the state at step 1 is transformed to:

$$
|\psi\rangle_{1}=\frac{1}{2^{1 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1}}|1\rangle\right)\left|j_{2} j_{3}\right\rangle
$$

Recall that the unitary operator R_{k} is defined as:

$$
R_{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i / 2^{k}}
\end{array}\right)
$$

It's easy to see that both S and T are special cases of the operator R_{k} for two different choices of k. S corresponds to R_{2} while T corresponds to R_{3}.
On the next step, applying the S operator on the first qubit controlled by the second qubits produces the state:

$$
|\psi\rangle_{2}=\frac{1}{2^{1 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1}} e^{2 \pi i 0.0 j_{2}}|1\rangle\right)\left|j_{2} j_{3}\right\rangle=\frac{1}{2^{1 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2}}|1\rangle\right)\left|j_{2} j_{3}\right\rangle
$$

Milos Prokop
Tutorial 6
Next, we perform the controlled- T operation and so we get:

$$
|\psi\rangle_{3}=\frac{1}{2^{1 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2}} e^{2 \pi i 0.00 j_{3}}|1\rangle\right)\left|j_{2} j_{3}\right\rangle=\frac{1}{2^{1 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} j_{3}}|1\rangle\right)\left|j_{2} j_{3}\right\rangle
$$

If we work with the exact same way for the rest of the steps we will get:
Step 4:

$$
|\psi\rangle_{4}=\frac{1}{2}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} j_{3}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{2}}\right)\left|j_{3}\right\rangle
$$

Step 5:

$$
|\psi\rangle_{4}=\frac{1}{2}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} j_{3}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{2} j_{3}}\right)\left|j_{3}\right\rangle
$$

Step 6:

$$
|\psi\rangle_{4}=\frac{1}{2^{3 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} j_{3}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{2} j_{3}}\right)\left(|0\rangle+e^{2 \pi i 0 . j_{3}}|1\rangle\right)
$$

At the final step, we swap the state of the first and third qubit and recover the quantum Fourier transformation:

$$
|\psi\rangle_{4}=\frac{1}{2^{3 / 2}}\left(|0\rangle+e^{2 \pi i 0 . j_{3}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{2} j_{3}}\right)\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} j_{3}}|1\rangle\right)
$$

Problem 2: Order-Finding

For two positive integers x and N with $x<N$ the order of x modulo N is defined to be the least positive integer such that:

$$
x^{r}=1 \quad \bmod N
$$

a. Show that for $x=2$ and $N=5$ we have $r=4$.

Solution: It's easy to see that for $r=4$:

$$
2^{4}=3 \times 5+1
$$

which implies $2^{4}=1 \bmod 5$. Similarly, one can show that $2^{3}=3 \bmod 5$ and $2^{2}=4 \bmod 5$. Therefore, $r=4$ is the least integer such that $2^{4}=1 \bmod 5$.
Note: Remark that modular exponentiation is a periodic function of period r. You can check that for $x=3$ we also obtain $r=4$, but for $x=4$ we have $r=2$, the latest can be easily derived from the case of $x=2$.
b. Now consider the transformation U_{x} which acts on the computational basis states as follows:

$$
U_{x}|y\rangle \equiv|x y \quad \bmod N\rangle
$$

Prove that:

Raul Garcia-Patron
Petros Wallden
Tutorial 6
IQC 2023-24
Milos Prokop

1. $U_{x} U_{x^{\prime}}=U_{x x^{\prime}}$
2. $U_{x^{-1}}=U_{x}^{-1}=U_{x}^{\dagger}$.
3. $U_{x} U_{x}^{\dagger}=U_{x}^{\dagger} U_{x}=I$, which proves it is an unitary transformation.
4. $U_{x}^{r}=I$ where r is the period of x modulo N.

Solution: We start with the first property, which result from the associativity of the multiplication of integer $\bmod N$. We have:

$$
\begin{gathered}
U_{x} U_{x^{\prime}}|y\rangle=U_{x}\left|x^{\prime} y \quad \bmod N\right\rangle=\left|x x^{\prime} y \quad \bmod N\right\rangle \\
U_{x x^{\prime}}|y\rangle=\left|x x^{\prime} y \quad \bmod N\right\rangle
\end{gathered}
$$

and thus:

$$
U_{x} U_{x^{\prime}}=U_{x x^{\prime}}=U_{x^{\prime}} U_{x}
$$

We continue with the second property:

$$
U_{x^{-1}} U_{x}|y\rangle=U_{x^{-1}}|x y \quad \bmod N\rangle=|y\rangle
$$

and thus:

$$
U_{x^{-1}}=U_{x}^{-1}
$$

Now for the second part of the second property:

$$
\langle y| U_{x}^{\dagger} U_{x}|y\rangle=\langle y x \quad \bmod N \mid y x \quad \bmod N\rangle=1
$$

and thus $U_{x}^{\dagger} U_{x}=I$ and so the inverse of U_{x} is U_{x}^{\dagger}, i.e.:

$$
U_{x^{-1}}=U_{x}^{-1}=U_{x}^{\dagger}
$$

The third property follows immediately from the previous property as $U_{x} U_{x}^{\dagger}=U_{x} U_{x}^{-1}=I=$ $U_{x}^{\dagger} U_{x}$ and thus U_{x} is a unitary operator.
Then for the final property we have:

$$
\underbrace{U_{x} U_{x} \ldots U_{x}}_{r}|y\rangle=\left|x^{r} y \quad \bmod N\right\rangle=|y\rangle
$$

and so we proved that:

$$
U_{x}^{r}=I
$$

c. Show that the states:

$$
\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2 \pi i s k}{r}}\left|x^{k} \quad \bmod N\right\rangle
$$

for integer $0 \leq s \leq r-1$ are eigenstates of U_{x}. What is their corresponding eigenvalues?
Solution: If we act with U_{x} on the states $\left|u_{s}\right\rangle$ we get:

$$
\begin{gathered}
U_{x}\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2 \pi i s k}{r}} U_{x}\left|x^{k} \bmod N\right\rangle \\
=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2 \pi i s k}{r}}\left|x^{k+1} \bmod N\right\rangle=\frac{1}{\sqrt{r}} \sum_{k^{\prime}=1}^{r} e^{-\frac{2 \pi i s\left(k^{\prime}-1\right)}{r}}\left|x^{k^{\prime}} \quad \bmod N\right\rangle
\end{gathered}
$$

where in the last step we switched the variable k with the variable $k^{\prime}=k+1$. If we continue with the calculation we have:

$$
U_{x}\left|u_{s}\right\rangle=e^{2 \pi i s / r} \frac{1}{\sqrt{r}} \sum_{k^{\prime}=1}^{r} e^{-\frac{2 \pi i s k^{\prime}}{r}}\left|x^{k^{\prime}} \bmod N\right\rangle
$$

But recall that r is the order of x modulo N and so $x^{r}=1 \bmod N$. It's easy to see then that the sum in the expression can be replaced to:

$$
\sum_{k^{\prime}=1}^{r} \rightarrow \sum_{k=0}^{r-1}
$$

as it correspond only to a reordering of the same sum (a shift to the left of a closed cycle). Thus, we can conclude that $\left|u_{s}\right\rangle$ is an eigenstate of the operator U_{x} with eigenvalue $e^{2 \pi i s / r}$:

$$
U_{x}\left|u_{s}\right\rangle=e^{2 \pi i s / r}\left|u_{s}\right\rangle
$$

d. As you can see preparing the state $\left|u_{s}\right\rangle$ requires that we know r in advance. Fortunately there is clever observation which circumvents the problems of preparing $\left|u_{s}\right\rangle$. Show that:
1.

$$
\sum_{s=0}^{r-1} e^{-2 \pi i s k / r}=r \delta_{k, 0}
$$

2.

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2 \pi i s k / r}\left|u_{s}\right\rangle=\left|x^{k} \quad \bmod N\right\rangle
$$

which has as special case when $k=0$:

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle,
$$

which is a trivial state to generate. This opens the door to applying quantum phaseestimation to sample from $\varphi=s / r$, which later leads to a guess of r as explained in the lecture on Shor's algorithm.
Solution: Consider the first expression and let $k=0$. It's easy to see that we have a sum of r terms, all equal to the identity and thus:

$$
\sum_{s=0}^{r-1} e^{-2 \pi i s k / r}=r \text { if } k=0
$$

Now consider $k \neq 0$. The sum then corresponds to a geometric series which is equal to:

$$
\sum_{s=0}^{r-1} e^{-2 \pi i s k / r}=\frac{1-e^{-2 \pi i k}}{1-e^{-2 \pi i k / r}}=0
$$

for every $k \in \mathbb{Z}$ with $k \neq 0$. Thus we can conclude that:

$$
\sum_{s=0}^{r-1} e^{-2 \pi i s k / r}=r \delta_{k, 0}
$$

For the second expression we have:

$$
\begin{aligned}
& \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2 \pi i s k / r}\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left[\left.e^{2 \pi i s k / r} \frac{1}{\sqrt{r}} \sum_{k^{\prime}=0}^{r-1} e^{-\frac{2 \pi i s k^{\prime}}{r}} \right\rvert\, x^{k^{\prime}}\right. \\
& \bmod N\rangle \\
& \left.=\frac{1}{r} \sum_{s=0}^{r-1} \sum_{k^{\prime}=0}^{r-1} e^{2 \pi i s\left(k-k^{\prime}\right) / r}\left|x^{k} \bmod N\right\rangle=\frac{1}{r} \sum_{k^{\prime}=0}^{r-1} r \delta_{0, k-k^{\prime}} \right\rvert\, x^{k^{\prime}} \\
& \bmod N\rangle
\end{aligned}
$$

where in the last equality we used the result from expression 1. It's trivial to see that $\delta_{0, k-k^{\prime}}=\delta_{k, k^{\prime}}$ and the sum over k^{\prime} contributes only when $k^{\prime}=k$. Thus:

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2 \pi i s k / r}\left|u_{s}\right\rangle=\left|x^{k} \quad \bmod N\right\rangle
$$

The case $k=1$ is only a corollary of this last result, leading to the input state $|1\rangle$ used in the order finding algorithm.
e. If we wanted to apply a phase estimation procedure we must have efficient procedures to implement a controlled- $U^{2^{j}}$ operation for any integer j. Given an integer number x, propose a technique to compute $x^{2^{k}}$ that scales linearly in k.
Solution: if we want to compute $x^{2^{k}}$ an inefficient approach is to multiply 2^{k} times x. A more efficient approach is to square iteratively, i.e., we apply the function $y^{2} \bmod N k$ times to the input x. It is easy to see then that we get the series $x^{2}, x^{4}, x^{2^{3}}, \ldots, x^{2^{k}}$. Because the

Raul Garcia-Patron
Petros Wallden
IQC 2023-24
Milos Prokop
Tutorial 6
multiplication is $\bmod N$, the memory register does not need to increase, as it will never be larger than N.
f. Assuming that we are given an unitary S such that implements $S|x\rangle=\left|x^{2} \bmod N\right\rangle$ that needs $O\left(L^{2}\right)$ gates, where $L=\lceil\log N\rceil$, i.e., the size of the register. How many gates we will be needed to implement $|x\rangle \rightarrow\left|x^{2^{k}} \bmod N\right\rangle$?
Solution: We are given that the unitary S is such that implements $S|x\rangle=\left|x^{2} \bmod N\right\rangle$ using $O\left(L^{2}\right)$ gates. Clearly if we want to implement $|x\rangle \rightarrow\left|x^{2^{k}} \bmod N\right\rangle$ we need to apply S k times, which lead to an asymptotic scaling $O\left(k L^{2}\right)$ of number of gates. Because in phase estimation we need to implement up to $U^{2^{k}}$ where $k \in\{0,2 L+1\}$, it is easy to see that need $O\left(L^{3}\right)$ gates.

