Raul Garcia-Patron
Petros Wallden
Tutorial 8
IQC 2022-23
Ioannis Kolotouros

Problem 1

Recall from the lectures the definition of the J gate as:

$$
J(\theta)=H R(\theta)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \theta} \\
1 & -e^{i \theta}
\end{array}\right)
$$

Additionally, recall that any single qubit gate can be decomposed using J gates:

$$
\begin{equation*}
U=J(0) J\left(\theta_{1}\right) J\left(\theta_{2}\right) J\left(\theta_{3}\right), \tag{1}
\end{equation*}
$$

for some $\theta_{1}, \theta_{2}, \theta_{3}$.
a. Using Eq. (1) express the general single-qubit unitary U as a matrix that its elements depend on $\theta_{1}, \theta_{2}, \theta_{3}$.
b. Using the matrix form for U derived in the first part of the question (known as the Jdecomposition), express the gates Z and X in the form of Eq. (1), i.e. find the corresponding angles $\theta_{1}, \theta_{2}, \theta_{3}$.
c. Using this decomposition, find a five-qubit measurement pattern that implements the gate Z and the same for the gate X.
Note: This is not the simplest way to implement X, Z with an MBQC measurement pattern. Can you guess, by inspection, simpler measurement patterns for X, Z ?

Problem 2

Consider the following MBQC graph with the input state $|\psi\rangle_{1}$ and the output on qubit 3.

Find the angles ϕ_{1} and ϕ_{2} so that the MBQC graph is equivalent to an application of the rotation θ gate:

Problem 3

Find a measurement pattern that implements the following quantum circuit. You need to give the graph and default measurement angles that implement the said circuit, while you can ignore the "corrections".

Hint: You need the second qubit, while the first qubit implements the gate Z, to do nothing i.e. implement the identity gate I.

Problem 4

Consider the following MBQC graph state. Assume that the input is the following product state $|\psi\rangle_{1}|\chi\rangle_{2}$, and that the outputs are the qubit 5 and the qubit 6 . The flow of the measurement pattern is the standard one, goes horizontally from left to right, i.e. $f(i)=$ $i+2$. The measurement pattern is defined with the following "default" measurement angles: $\phi_{1}=0, \phi_{2}=\pi, \phi_{3}=-\pi / 4$ and $\phi_{4}=0$.

a. What two-qubit unitary does the above measurement pattern implement?
b. Assume that we perform the above measurement pattern, and in the corresponding measurements we first get the outcomes: $s_{1}=1, s_{2}=1$.
Find the sets of vertices $S_{z}(3)$ and $S_{x}(3)$ of Z and X corrections for qubit 3 .
Find the corrected measurement angle ϕ_{3}^{\prime} that the third qubit should be measured.

