Problem 1

Recall from the lectures the definition of the J gate as:

$$
J(\theta)=H R(\theta)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \theta} \\
1 & -e^{i \theta}
\end{array}\right)
$$

Additionally, recall that any single qubit gate can be decomposed using J gates:

$$
\begin{equation*}
U=J(0) J\left(\theta_{1}\right) J\left(\theta_{2}\right) J\left(\theta_{3}\right) \tag{1}
\end{equation*}
$$

for some $\theta_{1}, \theta_{2}, \theta_{3}$.
a. Using Eq. (1) express the general single-qubit unitary U as a matrix that its elements depend on $\theta_{1}, \theta_{2}, \theta_{3}$.

Solution: In certain cases we can use various heuristic techniques to find the theta parameters. These would entail using things like $J(0)=H, H H=I, H X H=Z, H Z H=X$ etc. However, we will calculate the general expression for U from the decomposition and equate it to Z and X respectively, to determine the values of the theta parameters. As mentioned, we have that $J(0)=H$ and that that $H H=I$, and so our expression for U becomes:

$$
U=H H R\left(\theta_{1}\right) J\left(\theta_{2}\right) J\left(\theta_{3}\right)=R\left(\theta_{1}\right) J\left(\theta_{2}\right) J\left(\theta_{3}\right)
$$

If we do the explicit matrix multiplication, we find that:

$$
U=\frac{1}{2}\left(\begin{array}{cc}
1+e^{i \theta_{2}} & e^{i \theta_{3}}-e^{i\left(\theta_{2}+\theta_{3}\right)} \\
e^{i \theta_{1}}-e^{i\left(\theta_{1}+\theta_{2}\right)} & e^{i\left(\theta_{1}+\theta_{3}\right)}+e^{i\left(\theta_{1}+\theta_{2}+\theta_{3}\right)}
\end{array}\right)
$$

b. Using the matrix form for U derived in the first part of the question (known as the Jdecomposition), express the gates Z and X in the form of Eq. (1), i.e. find the corresponding angles $\theta_{1}, \theta_{2}, \theta_{3}$.

Solution: It is now a simple matter of identifying the matrix elements corresponding to the Z and X operators and picking the appropriate values for $\theta_{1}, \theta_{2}, \theta_{3}$. It is easy to notice that for Z we have $\theta_{1}=\pi, \theta_{2}=\theta_{3}=0$ and for X we have $\theta_{1}=\theta_{3}=0$ and $\theta_{2}=\pi$.
c. Using this decomposition, find a five-qubit measurement pattern that implements the gate Z and the same for the gate X.
Note: This is not the simplest way to implement X, Z with an MBQC measurement pattern. Can you guess, by inspection, simpler measurement patterns for X, Z ?

Solution: For the gate Z :

For the gate X :

By inspection we could find simpler patterns. For Z :

For X :

Problem 2

Consider the following MBQC graph with the input state $|\psi\rangle_{1}$ and the output on qubit 3.

Find the angles ϕ_{1} and ϕ_{2} so that the MBQC graph is equivalent to an application of the rotation θ gate:

Solution: Observe that since $J(\theta)=H R(\theta)$, if we set $\phi_{1}=-\theta$ and $\phi_{2}=0$, the MBQC graph implements $J\left(-\phi_{2}\right) J\left(-\phi_{1}\right)=J(0) J(\theta)=H R(0) H R(\theta)=H I H R(\theta)=R(\theta)$

Raul Garcia-Patron
Petros Wallden
Ioannis Kolotouros
Tutorial 8
IQC 2022-23
Problem 3

Find a measurement pattern that implements the following quantum circuit. You need to give the graph and default measurement angles that implement the said circuit, while you can ignore the "corrections".

Hint: You need the second qubit, while the first qubit implements the gate Z, to do nothing i.e. implement the identity gate I.

Solution: For the above circuit, we have the following measurement pattern:

With the output:
$\wedge Z_{56}\left[H R(0) H R(\pi)|\psi\rangle_{5} \otimes H R(0) H R(0)|\chi\rangle_{6}\right]=\wedge Z_{56}\left[Z|\psi\rangle_{5} \otimes \mathbb{1}|\chi\rangle_{6}\right]=(\wedge Z)_{56}(Z \otimes \mathbb{1})_{56}|\psi\rangle_{5} \otimes|\chi\rangle_{6}$

Problem 4

Consider the following MBQC graph state. Assume that the input is the following product state $|\psi\rangle_{1}|\chi\rangle_{2}$, and that the outputs are the qubit 5 and the qubit 6 . The flow of the measurement pattern is the standard one, goes horizontally from left to right, i.e. $f(i)=$ $i+2$. The measurement pattern is defined with the following "default" measurement angles: $\phi_{1}=0, \phi_{2}=\pi, \phi_{3}=-\pi / 4$ and $\phi_{4}=0$.

a. What two-qubit unitary does the above measurement pattern implement?

Solution: Measuring qubits 1 and 2 in the above angles $\left(\phi_{1}=0, \phi_{2}=\pi\right)$, we apply the gate $H \otimes(H Z)$. Next the $\wedge Z$ gate is applied, i.e. we now have the gate $(\wedge Z)(H \otimes(H Z))$. Finally, we measure qubits 3 and 4 that results in applying $H R(\pi / 4) \otimes H$, leading to the overall unitary that we computed:

$$
(H R(\pi / 4) \otimes H)(\wedge Z)(H \otimes(H Z))
$$

b. Assume that we perform the above measurement pattern, and in the corresponding measurements we first get the outcomes: $s_{1}=1, s_{2}=1$.

Find the sets of vertices $S_{z}(3)$ and $S_{x}(3)$ of Z and X corrections for qubit 3 .
Find the corrected measurement angle ϕ_{3}^{\prime} that the third qubit should be measured.

Solution: $S_{x}(3)=\{1\}$, we see that $f(1)=3$ so this is where the X-corrections come from. $S_{z}(3)=\{2\}$, we look all neighbours of qubit 3, and these are: qubit 1 , qubit 4 and qubit 5. Now the "past" of qubit 5 is qubit 3 itself (so it doesn't count), qubit 1 has nothing to its past, so we are left with qubit 4 that has qubit 2 at its past. This means that the only Z-correction to qubit 3, comes from qubit 2 .
The corrected angle is:

$$
\phi_{3}^{\prime}=(-1)^{s_{1}} \phi_{3}+\pi s_{2}=-(-\pi / 4)+\pi=5 \pi / 4
$$

