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© Noisy Intermediate Scale Quantum Devices and
Near-Term Quantum Algorithms

@ Variational Quantum Algorithms: What & How (4 steps)

© Step 1: Hamiltonian Problem with an Example (Max-Cut)
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Noisy Intermediate Scale Quantum Devices and

Near-Term Quantum Algorithms
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NISQ Devices: Limitations

Noisy Intermediate-Scale Quantum (NISQ) Devices
@ Qubit Number

Number of qubits a processor have (width of computation)
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Noisy Intermediate-Scale Quantum (NISQ) Devices
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NISQ Devices: Limitations

Noisy Intermediate-Scale Quantum (NISQ) Devices
@ Qubit Number
Number of qubits a processor have (width of computation)
o Gate Fidelity
Quality of quantum gates
@ Coherence Time

Time that quantum information can be stored
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NISQ Devices: Limitations

@ Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in “Near-Term"
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Fault Tolerant Quantum Computation not in “Near-Term"

@ Quality of output deteriorates with the size (width), number
of gates applied, depth of computation (time taken)

@ Architecture topology is important
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implement a computation than all-to-all connectivity

Beyond a point output is random

Even before that point output offers no longer an advantage
to classical methods
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NISQ Devices: Limitations

@ Quantum Error Correction not possible (too few qubits)
Fault Tolerant Quantum Computation not in “Near-Term"

@ Quality of output deteriorates with the size (width), number
of gates applied, depth of computation (time taken)

@ Architecture topology is important

Nearest-neighbour interaction leads to more physical gates to
implement a computation than all-to-all connectivity

Beyond a point output is random

Even before that point output offers no longer an advantage
to classical methods

Main Question:

Can NISQ devices offer computational advantage and how?
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NISQ Devices: Where we are

Superconducting hardware

@ Number of Qubits: =~ 100 (IBM's “Osprey’ has 433 and plans
to announce by the end of the year “Condor” with 1121
qubits)

@ Circuit depth: =~ 100 : 20 cycles of 5 gates
@ Quality of gates (a bit outdated):

1-qubit gate error: 1.6 x 1073

2-qubit gate error: 6.2 x 1073

Measurement error: 3.2 x 1072

From “Quantum supremacy using a programmable superconducting processor”, Frank Arute, Kunal Arya, [ - -],
John M. Martinis, Nature volume 574, 505 (2019)
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NISQ Devices: An approach towards quantum advantage

@ Use of Hybrid Quantum - Classical Algorithms
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@ Use of Hybrid Quantum - Classical Algorithms
@ Move big part of the computation to the classical devices
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@ Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small
coherence time
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@ Move big part of the computation to the classical devices

e Use of QC for specific subroutine that is (classically)
computationally expensive

@ Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small
coherence time

@ Can find a “quantum” solution to any problem:

Take a classical algorithm for the problem and replace
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NISQ Devices: An approach towards quantum advantage

@ Use of Hybrid Quantum - Classical Algorithms
@ Move big part of the computation to the classical devices

e Use of QC for specific subroutine that is (classically)
computationally expensive

@ Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small
coherence time

@ Can find a “quantum” solution to any problem:

Take a classical algorithm for the problem and replace
expensive subroutines with quantum ones

@ Heuristics with potential speed-ups

(to be examined case-by-case)
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Part Il

Variational Quantum Algorithms: What & How (4 steps)
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VQA: The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy")
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VQA: The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy")

There exist variations:

@ Find the minimum eigenvector (called “ground state”)

@ Find other eigenvalues or eigenvectors

)

e Find the expectation value ( “energy”) of a quantum state

(] H |4)
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VQA: The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy")

There exist variations:

@ Find the minimum eigenvector (called “ground state”)

@ Find other eigenvalues or eigenvectors

)

e Find the expectation value ( “energy”) of a quantum state

(] H |4)

How to use this to solve everyday problems?
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k-local Hamiltonian problem is QMA-complete

@ QMA: class of problems that they can be verified in poly-time
by a quantum computer

QMA is to BQP, what NP is to P

@ QMA contains both BQP and NP
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k-local Hamiltonian problem is QMA-complete

@ QMA: class of problems that they can be verified in poly-time
by a quantum computer

QMA is to BQP, what NP is to P
@ QMA contains both BQP and NP
@ The k-local Hamiltonian problem is:

Find the ground state energy of a Hamiltonian # = ). #,
where each 7; acts on at most k-qubits.

This is QMA-complete! (similar to k — SAT)
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k-local Hamiltonian problem is QMA-complete

@ QMA: class of problems that they can be verified in poly-time
by a quantum computer

QMA is to BQP, what NP is to P
@ QMA contains both BQP and NP
@ The k-local Hamiltonian problem is:

Find the ground state energy of a Hamiltonian # = ). #,
where each 7; acts on at most k-qubits.

This is QMA-complete! (similar to k — SAT)
@ We can use VQA to solve all problems in NP and BQP!

e But is it really practical? (not always: time, prob of success)
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Applications: Why is this task useful

@ Optimisation

@ Quantum Chemistry
@ Quantum Simulation
@ Many-body Physics

@ Quantum Machine Learning
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VQA: four steps

Step 1 Hamiltonian Encoding

Express your desired problem as the ground state of a suitable
qubit-Hamiltonian H

Step 2 Energy estimation (the only quantum part)

Given copies of a state |¢), estimate its energy (| H |1))
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VQA: four steps

Step 3 Choice of Ansatz

—

A family of parametrised quantum states |¢)(#)) where one of
its members approximates best the ground state

Step 4 Classical optimiser

A classical oPtimiser Ehat ﬁndsﬂthe vaLues 0* that minimise
the cost C(0) := ((0)| H [1(0)), ie 0* := arg min; C(0)
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Part Il

Step 1: Hamiltonian Problem with an Example (Max-Cut)
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The Max-Cut Problem

e Given Graph G = (V,E)
with vertices v € V and edges e = (vi, ) € E
@ Partition vertices to two sets 5,
where SUT =Vand SN T =1
@ Cut is the number of edges between the two sets 5,

(# of red edges)
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The Max-Cut Problem

Task: Select S, 7 such that the Cut is maximised

,t)e E SANteT
(n;a;;#(s, YEE|se €

@ Decision version of Max-Cut is NP-complete

@ Max(Min)-Cut has applications in Flow Networks including
circuit optimisation (VLS| design), computer vision and others

@ Version that edges have a weight w, and one maximises the

total weight of the cut edges exists (similar analysis):

, E T
(rgég) g;) Wse) | (5,t) EE N seESAtE
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Towards a Quantum Solution for Max-Cut

@ Need to use our tool (ground state energy of a Hamiltonian)

@ In general one can take any classical algorithm that solves
Max-Cut and replace an expensive sub-routine with a
Hamiltonian problem

e Natural map of this problem to a (simple) Hamiltonian
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Towards a Quantum Solution for Max-Cut

Need to use our tool (ground state energy of a Hamiltonian)

In general one can take any classical algorithm that solves
Max-Cut and replace an expensive sub-routine with a
Hamiltonian problem

Natural map of this problem to a (simple) Hamiltonian

Assign to each vertex v a spin s, € {+1,—1}

Those with s; = +1 define the one set (say S) those with
s; = —1 define the other set (say T)
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Towards a Quantum Solution for Max-Cut

e Consider the cost #(5s) (energy) of a configuration

s:=(s1,--*,5n)

Split the edges to three sets:

E*1 edges between vertices that both have s = +1
E~1 edges between vertices that both have s = —1

EC edges between vertices with different spins (the “cut”)
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Towards a Quantum Solution for Max-Cut

e Consider the cost #(5s) (energy) of a configuration

s:=(s1,--*,5n)

Split the edges to three sets:

E*1 edges between vertices that both have s = +1
E~1 edges between vertices that both have s = —1

EC edges between vertices with different spins (the “cut”)

HGES) = D sy (1)

(iJ)EE(G)
= Z sisj + Z sisj + Z SiSj
(iJ)eETL(G) (ij)eE~(G) (iJ)EEC(G)
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Towards a Quantum Solution for Max-Cut

o Note that s;s; = 1 for E*1, E~1 while s;s; = —1 for EC:

HE = > 1+ > 11— > 1

(iJ)EETH(G) (iJ)eE~1(G) (iJ)EEC(G)

= D>+ D>+ > 1=2 >

(i)EETH(G)  (I))EETNG)  (iJ)EEC(G) (iJ)EEC(G)

- > ey
(I)EE©G)  (i)eEC(6)
— |E| - 2Cut(G) (2)
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Towards a Quantum Solution for Max-Cut

o Note that s;s; = 1 for E*1, E~1 while s;s; = —1 for EC:

HE = > 1+ > 11— > 1

(iJ)EETH(G) (iJ)eE~1(G) (iJ)EEC(G)

= D>+ D>+ > 1=2 >

(i))EETH(G)  (iJ)€E~L(G)  (if)EEC(G) (i,/)€EC(G)

- > ey
(I)EE©G)  (i)eEC(6)
— |E| - 2Cut(G) (2)

@ The greater the Cut(G) the smaller the energy 7(5)
@ Minimising Energy = Solving Max-Cut!
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Towards a Quantum Solution for Max-Cut

@ Map each spin s; to a qubit |x;), where +1 — |0) ; —1 — |1)

@ The cost function (Hamiltonian) changes
H(S) = E(i,j)eE sisj — H(X) = E(i,j)eE(_l)XiJer

= H(Z) =Y jee Zi© Z
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Towards a Quantum Solution for Max-Cut

@ Map each spin s; to a qubit |x;), where +1 — |0) ; —1 — |1)

@ The cost function (Hamiltonian) changes

H(S) = E(i,j)eE sisj — H(X) = E(i,j)eE(_l)XiJer
= H(Z) =Y jee Zi© Z

Check: For each edge (/,j) € E we have
Zi ® Zj |xi) @ |xj) = (=1)779 |xi) @ |x;)

As earlier, if edge of same type — even parity there a +1
contribution (comp states remain invariant)

If edge of different type (i.e. counts in “cut”) — odd parity
and contributes as —1 (comp states remain invariant)
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Towards a Quantum Solution for Max-Cut

@ Map each spin s; to a qubit |x;), where +1 — |0) ; —1 — |1)

@ The cost function (Hamiltonian) changes
H(S) = E(i,j)eE sisj — H(X) = E(i,j)eE(_l)XiJer
— H(R) = > (ij)ee Zi® Zj

Check: For each edge (/,j) € E we have
Zi ® Zj |xi) @ |xj) = (=1)779 |xi) @ |x;)

As earlier, if edge of same type — even parity there a +1
contribution (comp states remain invariant)

If edge of different type (i.e. counts in “cut”) — odd parity
and contributes as —1 (comp states remain invariant)

@ Taking all terms together:
S(ijyee Zi® Zjxa -+ xm) = (|E| = 2Cut(G)) [xa -+ - xp)

Petros Wallden Lecture 21: Variational Quantum Algorithms |



Towards a Quantum Solution for Max-Cut

o The smallest eigenvalue of 7/(X) gives the maximum Cut(G)

Petros Wallden Lecture 21: Variational Quantum Algorithms |



Towards a Quantum Solution for Max-Cut

o The smallest eigenvalue of 7/(X) gives the maximum Cut(G)

@ Special case of an Ising Hamiltonian (important class)
H(X) = — Z(,‘J) JiZi® Zj— Yy hiZ;

@ Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.
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Towards a Quantum Solution for Max-Cut

o The smallest eigenvalue of 7/(X) gives the maximum Cut(G)
@ Special case of an Ising Hamiltonian (important class)
H(X) = =2y JiZi ® Zp — 32 hiZi

@ Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.

e We want to find |X) that minimises this Hamiltonian
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Towards a Quantum Solution for Max-Cut

o The smallest eigenvalue of 7/(X) gives the maximum Cut(G)
@ Special case of an Ising Hamiltonian (important class)
H(X) = = 2 i)y JiZi © Zj = n 32 hiZi
@ Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.
e We want to find |X) that minimises this Hamiltonian
Next Lecture:

@ How to compute the cost/energy of a quantum state
C(yY) :== (Y| H |y)

@ How to approximate the minimum without brute-forcing the
full Hilbert space
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