Introduction to Quantum Computing Lecture 21: Variational Quantum Algorithms I

Petros Wallden

School of Informatics, University of Edinburgh

31st October 2024

- Noisy Intermediate Scale Quantum Devices and Near-Term Quantum Algorithms
- 2 Variational Quantum Algorithms: What & How (4 steps)
- Step 1: Hamiltonian Problem with an Example (Max-Cut)

• • = • • = •

Noisy Intermediate Scale Quantum Devices and

Near-Term Quantum Algorithms

< 回 > < 回 > < 回 >

3

Noisy Intermediate-Scale Quantum (NISQ) Devices

• Qubit Number

Number of qubits a processor have (width of computation)

★ ∃ ► < ∃ ►</p>

Noisy Intermediate-Scale Quantum (NISQ) Devices

• Qubit Number

Number of qubits a processor have (width of computation)

• Gate Fidelity

Quality of quantum gates

Noisy Intermediate-Scale Quantum (NISQ) Devices

• Qubit Number

Number of qubits a processor have (width of computation)

• Gate Fidelity

Quality of quantum gates

• Coherence Time

Time that quantum information can be stored

• Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in "Near-Term"

• Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in "Near-Term"

• Quality of output deteriorates with the size (width), number of gates applied, depth of computation (time taken)

• Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in "Near-Term"

- Quality of output deteriorates with the size (width), number of gates applied, depth of computation (time taken)
- Architecture *topology* is important

Nearest-neighbour interaction leads to more physical gates to implement a computation than all-to-all connectivity

• Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in "Near-Term"

- Quality of output deteriorates with the size (width), number of gates applied, depth of computation (time taken)
- Architecture *topology* is important

Nearest-neighbour interaction leads to more physical gates to implement a computation than all-to-all connectivity

Beyond a point **output is random**

Even before that point output offers **no longer an advantage** to classical methods

• Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in "Near-Term"

- Quality of output deteriorates with the size (width), number of gates applied, depth of computation (time taken)
- Architecture *topology* is important

Nearest-neighbour interaction leads to more physical gates to implement a computation than all-to-all connectivity

Beyond a point **output is random**

Even before that point output offers **no longer an advantage** to classical methods

Main Question:

Can NISQ devices offer computational advantage and how?

200

Superconducting hardware

- Number of Qubits: ≈ 100 (IBM's "Osprey" has 433 and plans to announce by the end of the year "Condor" with 1121 qubits)
- Circuit depth: $\approx 100~:~20$ cycles of 5 gates
- Quality of gates (a bit outdated):

1-qubit gate error: 1.6×10^{-3}

2-qubit gate error: 6.2×10^{-3}

Measurement error: 3.2×10^{-2}

From "Quantum supremacy using a programmable superconducting processor", Frank Arute, Kunal Arya, $[\cdots]$, John M. Martinis, Nature volume 574, 505 (2019)

• Use of Hybrid Quantum - Classical Algorithms

()

- Use of Hybrid Quantum Classical Algorithms
- Move big part of the computation to the classical devices

- Use of Hybrid Quantum Classical Algorithms
- Move big part of the computation to the classical devices
- Use of QC for specific subroutine that is (classically) computationally expensive

- Use of Hybrid Quantum Classical Algorithms
- Move big part of the computation to the classical devices
- Use of QC for specific subroutine that is (classically) computationally expensive
- Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small coherence time

- Use of Hybrid Quantum Classical Algorithms
- Move big part of the computation to the classical devices
- Use of QC for specific subroutine that is (classically) computationally expensive
- Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small coherence time

• Can find a "quantum" solution to any problem:

Take a classical algorithm for the problem and replace expensive subroutines with quantum ones

- Use of Hybrid Quantum Classical Algorithms
- Move big part of the computation to the classical devices
- Use of QC for specific subroutine that is (classically) computationally expensive
- Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small coherence time

• Can find a "quantum" solution to any problem:

Take a classical algorithm for the problem and replace expensive subroutines with quantum ones

• Heuristics with **potential speed-ups**

(to be examined case-by-case)

Variational Quantum Algorithms: What & How (4 steps)

э

伺 ト イヨト イヨト

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called "ground state energy")

「ヨト・ヨト・ヨト

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called "ground state energy")

There exist variations:

- Find the minimum eigenvector (called "ground state")
- Find other eigenvalues or eigenvectors
- Find the expectation value ("energy") of a quantum state $|\psi\rangle$ $\langle\psi|\,\mathcal{H}\,|\psi\rangle$

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called "ground state energy")

There exist variations:

- Find the minimum eigenvector (called "ground state")
- Find other eigenvalues or eigenvectors
- ullet Find the expectation value ("energy") of a quantum state $|\psi\rangle$

 $\left<\psi\right|\mathcal{H}\left|\psi\right>$

How to use this to solve everyday problems?

k-local Hamiltonian problem is QMA-complete

• QMA: class of problems that they can be verified in poly-time by a quantum computer

QMA is to BQP, what NP is to P

• QMA contains both BQP and NP

• • = • • = •

k-local Hamiltonian problem is QMA-complete

• QMA: class of problems that they can be verified in poly-time by a quantum computer

QMA is to BQP, what NP is to P

- QMA contains both BQP and NP
- The *k*-local Hamiltonian problem is:

Find the **ground state energy** of a Hamiltonian $\mathcal{H} = \sum_{i} \mathcal{H}_{i}$ where each \mathcal{H}_{i} acts on at most *k*-qubits.

This is QMA-complete! (similar to k - SAT)

k-local Hamiltonian problem is QMA-complete

• QMA: class of problems that they can be verified in poly-time by a quantum computer

QMA is to BQP, what NP is to P

- QMA contains both BQP and NP
- The *k*-local Hamiltonian problem is:

Find the **ground state energy** of a Hamiltonian $\mathcal{H} = \sum_{i} \mathcal{H}_{i}$ where each \mathcal{H}_{i} acts on at most *k*-qubits.

This is QMA-complete! (similar to k - SAT)

- We can use VQA to solve all problems in NP and BQP!
- But is it really practical? (not always: time, prob of success)

- Optimisation
- Quantum Chemistry
- Quantum Simulation
- Many-body Physics
- Quantum Machine Learning

Step 1 Hamiltonian Encoding

Express your desired problem as the ground state of a suitable qubit-Hamiltonian $\ensuremath{\mathcal{H}}$

Step 2 Energy estimation (the only quantum part)

Given copies of a state $|\psi\rangle$, estimate its energy $\langle \psi | \mathcal{H} | \psi \rangle$

Step 3 Choice of Ansatz

A family of parametrised quantum states $|\psi(\vec{\theta})\rangle$ where one of its members approximates best the ground state

Step 4 Classical optimiser

A classical optimiser that finds the values $\vec{\theta^*}$ that minimise the cost $C(\vec{\theta}) := \langle \psi(\vec{\theta}) | \mathcal{H} | \psi(\vec{\theta}) \rangle$, ie $\vec{\theta^*} := \arg \min_{\vec{\theta}} C(\vec{\theta})$

Step 1: Hamiltonian Problem with an Example (Max-Cut)

< 同 > < 国 > < 国 >

Ξ.

The Max-Cut Problem

• Given Graph G = (V, E)

with vertices $v \in V$ and edges $e = (v_1, v_2) \in E$

• Partition vertices to two sets *S*, *T*

where $S \cup T = V$ and $S \cap T = \emptyset$

Cut is the number of edges between the two sets S, T
 (# of red edges)

The Max-Cut Problem

Task: Select *S*, *T* such that the Cut is maximised

 $\max_{(S,T)} \#(s,t) \in E \mid s \in S \land t \in T$

- Decision version of Max-Cut is NP-complete
- Max(Min)-Cut has applications in Flow Networks including circuit optimisation (VLSI design), computer vision and others
- Version that edges have a weight *w_e* and one maximises the total weight of the cut edges exists (similar analysis):

$$\max_{(S,T)} \sum_{(s,t)} w_{(s,t)} \mid (s,t) \in E \land s \in S \land t \in T$$

- Need to use our tool (ground state energy of a Hamiltonian)
- In general one can take any classical algorithm that solves Max-Cut and replace an expensive sub-routine with a Hamiltonian problem
- Natural map of this problem to a (simple) Hamiltonian

- Need to use our tool (ground state energy of a Hamiltonian)
- In general one can take any classical algorithm that solves Max-Cut and replace an expensive sub-routine with a Hamiltonian problem
- Natural map of this problem to a (simple) Hamiltonian
- Assign to each vertex v a spin $s_v \in \{+1, -1\}$
- Those with $s_i = +1$ define the one set (say S) those with $s_i = -1$ define the other set (say T)

• Consider the cost $\mathcal{H}(\vec{s})$ (energy) of a configuration $\vec{s} := (s_1, \cdots, s_n)$

Split the edges to three sets:

- E^{+1} edges between vertices that both have s = +1
- E^{-1} edges between vertices that both have s=-1
- E^{C} edges between vertices with different spins (the "cut")

• Consider the cost $\mathcal{H}(\vec{s})$ (energy) of a configuration $\vec{s} := (s_1, \cdots, s_n)$

Split the edges to three sets:

- E^{+1} edges between vertices that both have s = +1
- E^{-1} edges between vertices that both have s = -1
- E^{C} edges between vertices with different spins (the "cut")

$$\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E(G)} s_i s_j$$

$$= \sum_{(i,j)\in E^{+1}(G)} s_i s_j + \sum_{(i,j)\in E^{-1}(G)} s_i s_j + \sum_{(i,j)\in E^{C}(G)} s_i s_j$$
(1)

• Note that $s_i s_j = 1$ for E^{+1}, E^{-1} while $s_i s_j = -1$ for E^C :

$$\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E^{+1}(G)} 1 + \sum_{(i,j)\in E^{-1}(G)} 1 - \sum_{(i,j)\in E^{C}(G)} 1$$

$$= \sum_{(i,j)\in E^{+1}(G)} + \sum_{(i,j)\in E^{-1}(G)} + \sum_{(i,j)\in E^{C}(G)} 1 - 2\sum_{(i,j)\in E^{C}(G)} 1$$

$$= \sum_{(i,j)\in E(G)} -2\sum_{(i,j)\in E^{C}(G)}$$

$$= |E| - 2\operatorname{Cut}(G)$$
(2)

> < 프 > < 프 >

3

• Note that $s_i s_j = 1$ for E^{+1}, E^{-1} while $s_i s_j = -1$ for E^C :

$$\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E^{+1}(G)} 1 + \sum_{(i,j)\in E^{-1}(G)} 1 - \sum_{(i,j)\in E^{C}(G)} 1$$

$$= \sum_{(i,j)\in E^{+1}(G)} + \sum_{(i,j)\in E^{-1}(G)} + \sum_{(i,j)\in E^{C}(G)} 1 - 2\sum_{(i,j)\in E^{C}(G)} 1$$

$$= \sum_{(i,j)\in E(G)} -2\sum_{(i,j)\in E^{C}(G)}$$

$$= |E| - 2\operatorname{Cut}(G)$$
(2)

- The greater the Cut(G) the smaller the energy $\mathcal{H}(\vec{s})$
- Minimising Energy = Solving Max-Cut!

- Map each spin s_i to a qubit $|x_i
 angle$, where +1 o |0
 angle ; -1 o |1
 angle
- The cost function (Hamiltonian) changes $\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E} s_i s_j \rightarrow \mathcal{H}(\vec{x}) := \sum_{(i,j)\in E} (-1)^{x_i+x_j}$

$$\rightarrow \hat{\mathcal{H}}(\vec{x}) := \sum_{(i,j) \in E} Z_i \otimes Z_j$$

伺 と く ヨ と く ヨ と

3

- Map each spin s_i to a qubit $|x_i
 angle$, where +1 o |0
 angle ; -1 o |1
 angle
- The cost function (Hamiltonian) changes $\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E} s_i s_j \rightarrow \mathcal{H}(\vec{x}) := \sum_{(i,j)\in E} (-1)^{x_i+x_j}$

$$ightarrow \hat{\mathcal{H}}(\vec{x}) := \sum_{(i,j)\in E} Z_i \otimes Z_j$$

Check: For each edge $(i, j) \in E$ we have $Z_i \otimes Z_j |x_i\rangle \otimes |x_j\rangle = (-1)^{x_i+x_j} |x_i\rangle \otimes |x_j\rangle$

As earlier, if edge of same type \rightarrow even parity there a +1 contribution (comp states remain invariant)

If edge of different type (i.e. counts in "cut") \rightarrow odd parity and contributes as -1 (comp states remain invariant)

- Map each spin s_i to a qubit $|x_i
 angle$, where +1 o |0
 angle ; -1 o |1
 angle
- The cost function (Hamiltonian) changes $\mathcal{H}(\vec{s}) = \sum_{(i,j)\in E} s_i s_j \rightarrow \mathcal{H}(\vec{x}) := \sum_{(i,j)\in E} (-1)^{x_i+x_j}$

$$ightarrow \hat{\mathcal{H}}(\vec{x}) := \sum_{(i,j)\in E} Z_i \otimes Z_j$$

Check: For each edge $(i, j) \in E$ we have $Z_i \otimes Z_j |x_i\rangle \otimes |x_j\rangle = (-1)^{x_i+x_j} |x_i\rangle \otimes |x_j\rangle$

As earlier, if edge of same type \rightarrow even parity there a +1 contribution (comp states remain invariant)

If edge of different type (i.e. counts in "cut") \to odd parity and contributes as -1 (comp states remain invariant)

• Taking all terms together:

$$\sum_{(i,j)\in E} Z_i \otimes Z_j | x_1 \cdots x_n \rangle = (|E| - 2\operatorname{Cut}(G)) | x_1 \cdots x_n \rangle$$

• The smallest eigenvalue of $\hat{\mathcal{H}}(\vec{x})$ gives the maximum Cut(G)

э

- The smallest eigenvalue of $\hat{\mathcal{H}}(\vec{x})$ gives the maximum Cut(G)
- Special case of an Ising Hamiltonian (important class)

$$\mathcal{H}(\vec{x}) = -\sum_{(i,j)} J_{ij} Z_i \otimes Z_j - \mu \sum_i h_i Z_i$$

Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.

(b) a (B) b (a (B) b)

- The smallest eigenvalue of $\hat{\mathcal{H}}(\vec{x})$ gives the maximum Cut(G)
- Special case of an Ising Hamiltonian (important class)

$$\mathcal{H}(\vec{x}) = -\sum_{(i,j)} J_{ij} Z_i \otimes Z_j - \mu \sum_i h_i Z_i$$

- Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.
- We want to find $|\vec{x}\rangle$ that **minimises this Hamiltonian**

伺下 イヨト イヨト

- The smallest eigenvalue of $\hat{\mathcal{H}}(\vec{x})$ gives the maximum $\mathsf{Cut}(G)$
- Special case of an Ising Hamiltonian (important class)

$$\mathcal{H}(\vec{x}) = -\sum_{(i,j)} J_{ij} Z_i \otimes Z_j - \mu \sum_i h_i Z_i$$

- Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.
- We want to find $|\vec{x}\rangle$ that **minimises this Hamiltonian**

Next Lecture:

- How to compute the cost/energy of a quantum state $C(\psi):=\langle\psi|\,\mathcal{H}\,|\psi
 angle$
- How to approximate the minimum without brute-forcing the full Hilbert space

(4月) (4日) (4日)

Variational Quantum Algorithms Reviews

- Variational quantum algorithms, Cerezo, Marco, et al. Nature Reviews Physics (2021): 1-20.
- Noisy intermediate-scale quantum (NISQ) algorithms, Bharti, Kishor, et al. Rev. Mod. Phys. 94, 015004 (2022).
- Quantum optimization using variational algorithms on near-term quantum devices, Moll, Nikolaj, et al. Quantum Science and Technology 3.3 (2018): 030503.