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This Lecture

1 Step 2: How to Measure the Energy/Cost

2 Step 3: The Ansatz (Family of Quantum States)

3 Step 4: Classical Optimisation & VQA Summary
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Part I

Step 2: How to Measure the Energy/Cost
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Previously in VQA

The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy”)

Why is it relevant?

Can solve it using VQA that is suitable for NISQ devices

k-local Hamiltonian problem is QMA-complete
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Previously in VQA: the four steps

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable
qubit-Hamiltonian H

Step 2 Energy estimation (the only quantum part)

Given copies of a state |ψ⟩, estimate its energy ⟨ψ|H |ψ⟩

Step 3 Choice of Ansatz

A family of parametrised quantum states |ψ(θ⃗)⟩ where one of
its members approximates best the ground state

Step 4 Classical optimiser

A classical optimiser that finds the values θ⃗∗ that minimise
the cost C (θ⃗) := ⟨ψ(θ⃗)|H |ψ(θ⃗)⟩, ie θ⃗∗ := argmin

θ⃗
C (θ⃗)
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Step 2: Energy Estimation

Given:

An efficient, NISQ compatible, description to generate an
n-qubit quantum state |ψ⟩

An n-qubit Hamiltonian H

Task: Estimate the energy E (ψ) := ⟨ψ|H |ψ⟩

1 Decompose the Hamiltonian to sum of Pauli observables

2 Generate multiple copies of |ψ⟩

3 Measure each Pauli suff times to get desired accuracy

4 Combine above to get an estimate for the energy E (ψ)
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Decompose Hamiltonian to local Pauli observables

Pauli observables can be measured locally and easily

Frequently the Hamiltonian is already as sum of Pauli’s

E.g. Ising Hamiltonians

H = −
∑

(i ,j) JijZi ⊗ Zj − µ
∑

i hiZi

Other decompositions of the Hamiltonian to simple local
obervables can and have been considered (not here)
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Decompose Hamiltonian to local Pauli observables

Any n-qubit Hermitian operator can be written as sum of
products of Pauli matrices Pi ∈ {I ,X ,Y ,Z}
(is orthonormal basis – Pauli observ: {+1,−1} eigenvalues)

H =
∑

ci1,··· ,inP
i1
1 ⊗ · · · ⊗ P in

n

Practically, in many cases it is given in this form or in a
similar form where one needs to decompose some fixed
two-qubit gates (∧X ,∧Z , etc) in Pauli’s

To compute coefficients ci1,··· ,in use the inner product

⟨A,B⟩ := Tr(A†B)

2n

ci1,··· ,in = ⟨P i1
1 ⊗ · · · ⊗ P in

n ,H⟩
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Decompose Hamiltonian to local Pauli observables

Example:

Decompose H = 1√
2

(
1 1
1 −1

)
in Pauli’s

H = αI + βX + γY + δZ

⟨I ,H⟩ = α = 0 ; ⟨X ,H⟩ = β =
√
2/2

⟨Y ,H⟩ = γ = 0 ; ⟨Z ,H⟩ = δ =
√
2/2

As expected

H =
1√
2
(X + Z ) =

1√
2

((
0 1
1 0

)
+

(
1 0
0 −1

))

Other example (check)

∧Z =
1

2
(I ⊗ I + I ⊗ Z + Z ⊗ I − Z ⊗ Z )
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Estimating the value of Pauli observables ⟨ψ|P |ψ⟩
Prepare-and-measure the state N times

Each outcome gives a value Oi ∈ {+1,−1}

Output ⟨O⟩ =
∑

i Oi/N for the value of the observable

If we require accuracy of our estimate ϵ with δ confidence:

N ≈ O(
1

ϵ2
log

(
1

δ

)
)

By Hoeffding (and Chernoff) inequalities we know:

Pr(|Ō − ⟨O⟩| ≥ ϵ) ≤ e−Nϵ2

Probability that the true expectation differs by ϵ or more from
the measured one

If we require that this probability is also bounded by
δ = e−Nϵ2 our confidence, we get above expression
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Implications of the accuracy

Note that the resources required depend on the problem

NP-complete problems (or even worse QMA-complete)
cannot be solved in poly-time with a quantum computer

Problems outside BQP have negligible “energy gap”, i.e. the
ground state differs from the next eigenvalue (1st excited
state) by a very small amount

To achieve accuracy that distinguishes between the two,
one needs super-polynomial repetitions

High accuracy is also required:

- To move in a hyper-parametrised space

(where gradients are negligible)

- To overcome the effects of noise and determine truly the
direction in the parameter space to move.
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Computing the Energy E (ψ)

Using the Pauli decomposition we have:

E (ψ) = ⟨ψ|H |ψ⟩ =
∑

ci1,··· ,in ⟨ψ|P
i1
1 ⊗ · · · ⊗ P in

n |ψ⟩

where ⟨ψ|P i1
1 ⊗ · · · ⊗ P in

n |ψ⟩ are the Pauli observables we
estimated earlier

The accuracy of the energy estimate depends on the accuracy
of individual terms, and the number of terms in the sum

We will use this value as the “cost” of the state |ψ⟩

For the earlier example: H = 1√
2
(X + Z ) we need to estimate

two observables:

⟨ψ|X |ψ⟩ = O1 ; ⟨ψ|Z |ψ⟩ = O2

Resulting to E (ψ) = 1√
2
(O1 + O2)
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Part II

Step 3: The Ansatz (Family of Quantum States)
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Ansatz: The space we optimise

To solve the Hamiltonian problem we need to find the
quantum state that has minimum energy from all the states
of the Hilbert space

This is infeasible. Instead, we select a family of
(parametrised) quantum states, and we hope that one
member of the family approx. well the ground state.

Can view the ansatz as a family of parametrised quantum
circuits: |ψ(θ⃗)⟩ = U(θ⃗) |0⟩

The circuits U(θ⃗) should be NISQ devices compatible (short
depth, limited width)

Two approaches: (i) Hardware Efficient, (ii) Problem Specific
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(i) Hardware Efficient Ansatz

Generate a family of states that spans evenly the Hilbert space

Needs to be able to produced high entanglement

Should choose circuits that are easy to implement with a
given NISQ device

Generic Ansatz that can be used for any Hamiltonian problem

Typical Ansatz:

1 A number of layers repeating the same circuit with different
parameters

2 Single-qubit rotations parametrised by the rotation angle

3 Entangling gates (non-commuting with the rotations)

Hardware architecture determines entanglement topology
(all-to-all Vs nearest-neighbour)
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(i) Hardware Efficient Ansatz

An Example: 3-qubit, 1-layer, all-to-all entanglement

θ⃗ := (θ1, θ2, θ3, θ4, θ5, θ6)

|0⟩ H R(θ1) • • R(θ4)

|0⟩ H R(θ2) • R(θ5) |Ψ(θ⃗)⟩

|0⟩ H R(θ3) R(θ6)
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(ii) Problem Specific Ansatz

Generate a family of states that uses the problem’s
Hamiltonian

Does not span evenly the Hilbert space – hopefully is more
dense around the region we expect to have the ground state

Not designed with the hardware in mind

Is theoretically more promising, but in practice may lead to
more noisy results

Many families exist (e.g. unitary coupled cluster, adiabatic,
etc).

We give an important type suitable for optimisation problems:

Quantum Approximate Optimisation Algorithm (QAOA)
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Quantum Approximate Optimisation Algorithm

Let HC be the problem’s Hamiltonian of Ising type (only
Pauli-Z, up to quadratic terms)

Recall Max-Cut: HC =
∑

(i ,j)∈E Zi ⊗ Zj

Let HB =
∑

i Xi be the “mixer” Hamiltonian

A 1-layer QAOA ansatz is given by

e−iβHB e−iγHCH⊗n |0⟩⊗n

A single layer has only two parameters (β, γ), irrespective of
the number of qubits/width of computation
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Quantum Approximate Optimisation Algorithm

The mixer Hamiltonian leads to single-qubit rotations e−iβXi

The problem Hamiltonian has terms Zi ⊗ Zj leading to
unitaries e−iγZiZj :

• •

R(2γ)

Depending on interaction terms of HC entangling gates can
act on distant qubits

Problem has to be Ising (i.e. only Pauli Z, and at most
quadratic terms). Other cases can exist but ansatz becomes
much harder to implement.

More layers repeat the above with fresh parameters (β2, γ2)
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Part III

Step 4: Classical Optimisation & VQA Summary
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Moving Through Parameter Space

Given:

Ansatz: set of q-states parametrised by classical parameters θ⃗

How to compute the “cost-function” E (θ⃗) = ⟨Ψ(θ⃗)|H |Ψ(θ⃗)⟩

Task:

Find the minimum (local or global).

Can use any classical optimisation technique

Examples of Techniques Used:

Gradient Descent

Monte Carlo - based

Nelder-Mead method

COBYLA (Constr. Optimiz. by Linear Approximation)

Any deterministic or stochastic global optimisation method
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Gradient Descent

Trick to compute the gradient (generalises).
Parametrised gates: UP = e−iθP with P a Pauli
(recall P2 = I)

UP(θ) = I cos(θ)− iP sin(θ) ;
∂

∂θ
UP(θ) = −iPe−iθP

leading to

∂

∂θ
E (θ) = E (θ +

π

4
)− E (θ − π

4
)

Note: This difference is NOT infinitesimal!

Move towards negative direction of the gradient:

θ⃗i+1 = θ⃗i − γ∇E (θ⃗i ) ; ∇E (θ⃗i ) =
(
∂θ1E (θ⃗), ∂θ2E (θ⃗), ∂θ3E (θ⃗)

)
Can find local minima (not global)
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Parametrised gates: UP = e−iθP with P a Pauli
(recall P2 = I)

UP(θ) = I cos(θ)− iP sin(θ) ;
∂

∂θ
UP(θ) = −iPe−iθP

leading to

∂

∂θ
E (θ) = E (θ +

π

4
)− E (θ − π

4
)

Note: This difference is NOT infinitesimal!
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Monte Carlo - Based

Initial Guess θ⃗0 and compute E (θ⃗0)

Generate a new guess θ⃗′ (using any method, e.g. by varying a
single parameter) and compute E (θ⃗′)

If, E (θ⃗′) ≤ E (θ⃗0), keep guess and continue with θ⃗1 := θ⃗′

Else, with probability pr = 1− e−β(E(θ⃗′)−E(θ⃗0)), reject guess
(make a fresh guess starting again from θ⃗0)

With the remaining probability pa = e−β(E(θ⃗′)−E(θ⃗0)), keep
guess and continue with θ⃗1 := θ⃗′

Observations

May keep moving with greater new Energy (esc local min)

Keeping probability reduces with Energy difference

β is “inverse temperature”. Can increase value with iteration
steps β(i) (so it stabilises in time)
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Limitations

Resources:

- Repetitions per round (accuracy desired)

- Optimisation rounds (classical optimisation problem)

Effect of noise:

- Greater repetitions to achieve desired accuracy

- Potentially systematic errors in estimating cost

Possible Failures:

- Converge to local minimum

- Fail to conv. (Flat Landscape a.e.) “Barren Plateau”

Overall limitations (heuristics):

- Not exact complexity

- No guarantee for obtaining solution
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VQA Pictorially

Taken from: Nikolaj Moll et al 2018 Quantum Sci. Technol. 3 030503

Petros Wallden Lecture 22: Variational Quantum Algorithms II



VQA: Summary

Hybrid Quantum-Classical Algorithms

Quantum Part needs small coherence time, works without
QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

1 Map problem to ground state energy of some Hamiltonian H
(classical)

2 Can generate (efficiently) a family of states |Ψ(θ⃗)⟩ (quantum)

3 Can compute expectation value E
θ⃗
= ⟨Ψ(θ⃗)|H |Ψ(θ⃗)⟩ with

local Pauli measurement for any guess θ⃗ (quantum)

4 Comparing E (θ⃗) of existing points, evaluate a new guess θ⃗′

using standard techniques.
Feedback to step 2 to evaluate E (θ⃗′) (classical)
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