Introduction to Quantum Computing Lecture 22: Variational Quantum Algorithms II

Petros Wallden

School of Informatics, University of Edinburgh

5th November 2024

- Step 2: How to Measure the Energy/Cost
- Step 3: The Ansatz (Family of Quantum States)
- Step 4: Classical Optimisation & VQA Summary

• • = • • = •

Step 2: How to Measure the Energy/Cost

伺下 イヨト イヨト

æ

The Mathematical Task

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called "ground state energy")

4 3 6 4 3 6

The Mathematical Task

Given a Hermitian matrix \mathcal{H} (typically called Hamiltonian), compute its smallest eigenvalue (called "ground state energy")

Why is it relevant?

- Can solve it using VQA that is suitable for NISQ devices
- *k*-local Hamiltonian problem is QMA-complete

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable qubit-Hamiltonian $\ensuremath{\mathcal{H}}$

- 3 b - 4 3 b

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable qubit-Hamiltonian $\ensuremath{\mathcal{H}}$

Step 2 Energy estimation (the only quantum part)

Given copies of a state $|\psi\rangle$, estimate its energy $\langle \psi | \mathcal{H} | \psi \rangle$

Step 3 Choice of Ansatz

A family of parametrised quantum states $|\psi(\vec{\theta})\rangle$ where one of its members approximates best the ground state

Step 4 Classical optimiser

A classical optimiser that finds the values $\vec{\theta^*}$ that minimise the cost $C(\vec{\theta}) := \langle \psi(\vec{\theta}) | \mathcal{H} | \psi(\vec{\theta}) \rangle$, ie $\vec{\theta^*} := \arg \min_{\vec{\theta}} C(\vec{\theta})$

Given:

- An efficient, NISQ compatible, description to generate an *n*-qubit quantum state $|\psi\rangle$
- An *n*-qubit Hamiltonian $\mathcal H$

Given:

- An efficient, NISQ compatible, description to generate an *n*-qubit quantum state $|\psi\rangle$
- An *n*-qubit Hamiltonian $\mathcal H$

Task: Estimate the energy $E(\psi) := \langle \psi | \mathcal{H} | \psi \rangle$

Given:

- An efficient, NISQ compatible, description to generate an *n*-qubit quantum state $|\psi\rangle$
- An *n*-qubit Hamiltonian \mathcal{H}

Task: Estimate the energy $E(\psi) := \langle \psi | \mathcal{H} | \psi \rangle$

- Decompose the Hamiltonian to sum of Pauli observables
- 2 Generate multiple copies of $|\psi\rangle$
- Measure each Pauli suff times to get desired accuracy
- Combine above to get an estimate for the energy $E(\psi)$

- Pauli observables can be measured locally and easily
- Frequently the Hamiltonian is already as sum of Pauli's

E.g. Ising Hamiltonians

 $\mathcal{H} = -\sum_{(i,j)} J_{ij} Z_i \otimes Z_j - \mu \sum_i h_i Z_i$

• Other decompositions of the Hamiltonian to simple local obervables can and have been considered (not here)

Any *n*-qubit Hermitian operator can be written as sum of products of Pauli matrices *P_i* ∈ {*I*, *X*, *Y*, *Z*} (is orthonormal basis – Pauli observ: {+1, −1} eigenvalues)

$$\mathcal{H}=\sum c_{i_1,\cdots,i_n}P_1^{i_1}\otimes\cdots\otimes P_n^{i_n}$$

Any *n*-qubit Hermitian operator can be written as sum of products of Pauli matrices *P_i* ∈ {*I*, *X*, *Y*, *Z*} (is orthonormal basis – Pauli observ: {+1, −1} eigenvalues)

$$\mathcal{H}=\sum c_{i_1,\cdots,i_n}P_1^{i_1}\otimes\cdots\otimes P_n^{i_n}$$

 Practically, in many cases it is given in this form or in a similar form where one needs to decompose some fixed two-qubit gates (∧X, ∧Z, etc) in Pauli's

Any *n*-qubit Hermitian operator can be written as sum of products of Pauli matrices *P_i* ∈ {*I*, *X*, *Y*, *Z*} (is orthonormal basis – Pauli observ: {+1, −1} eigenvalues)

$$\mathcal{H}=\sum c_{i_1,\cdots,i_n}P_1^{i_1}\otimes\cdots\otimes P_n^{i_n}$$

- Practically, in many cases it is given in this form or in a similar form where one needs to decompose some fixed two-qubit gates (∧X, ∧Z, etc) in Pauli's
- To compute coefficients c_{i_1, \dots, i_n} use the inner product

$$\langle A,B\rangle := rac{\operatorname{Tr}(A^{\dagger}B)}{2^{n}}$$

$$c_{i_1,\cdots,i_n} = \langle P_1^{i_1} \otimes \cdots \otimes P_n^{i_n}, \mathcal{H} \rangle$$

Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli's $H = \alpha I + \beta X + \gamma Y + \delta Z$

伺 ト イヨ ト イヨト

Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli's $H = \alpha I + \beta X + \gamma Y + \delta Z$

$$\langle I, H \rangle = \alpha = 0$$
; $\langle X, H \rangle = \beta = \sqrt{2}/2$
 $\langle Y, H \rangle = \gamma = 0$; $\langle Z, H \rangle = \delta = \sqrt{2}/2$

伺 ト イヨ ト イヨト

Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli's $H = \alpha I + \beta X + \gamma Y + \delta Z$

As expected

$$H = \frac{1}{\sqrt{2}} \left(X + Z \right) = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)$$

• • = • • = •

Example:

Decompose $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ in Pauli's $H = \alpha I + \beta X + \gamma Y + \delta Z$

As expected

$$H = \frac{1}{\sqrt{2}} \left(X + Z \right) = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)$$

• Other example (check)

$$\wedge Z = \frac{1}{2} \left(I \otimes I + I \otimes Z + Z \otimes I - Z \otimes Z \right)$$

Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle \mathcal{O} \rangle = \sum_i O_i / N$ for the value of the observable

.

Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle \mathcal{O} \rangle = \sum_i O_i / N$ for the value of the observable
- If we require accuracy of our estimate ϵ with δ confidence:

$$N pprox O(rac{1}{\epsilon^2} \log\left(rac{1}{\delta}
ight))$$

Estimating the value of Pauli observables $\langle \psi | P | \psi \rangle$

- Prepare-and-measure the state N times
- Each outcome gives a value $O_i \in \{+1, -1\}$
- Output $\langle \mathcal{O} \rangle = \sum_i O_i / N$ for the value of the observable
- If we require accuracy of our estimate ϵ with δ confidence:

$$N pprox O(rac{1}{\epsilon^2}\log\left(rac{1}{\delta}
ight))$$

• By Hoeffding (and Chernoff) inequalities we know:

$$\Pr(|ar{O} - \langle O
angle| \geq \epsilon) \leq e^{-N\epsilon^2}$$

Probability that the true expectation differs by ϵ or more from the measured one

• If we require that this probability is also bounded by $\delta = e^{-N\epsilon^2}$ our confidence, we get above expression

Implications of the accuracy

- Note that the resources required depend on the problem
- NP-complete problems (or even worse QMA-complete) cannot be solved in poly-time with a quantum computer
- Problems outside BQP have negligible "energy gap", i.e. the ground state differs from the next eigenvalue (1st excited state) by a very small amount
- To achieve accuracy that distinguishes between the two, one needs super-polynomial repetitions

Implications of the accuracy

- Note that the resources required depend on the problem
- NP-complete problems (or even worse QMA-complete) cannot be solved in poly-time with a quantum computer
- Problems outside BQP have negligible "energy gap", i.e. the ground state differs from the next eigenvalue (1st excited state) by a very small amount
- To achieve accuracy that distinguishes between the two, one needs super-polynomial repetitions
- High accuracy is also required:
- To move in a hyper-parametrised space

(where gradients are negligible)

- To overcome the effects of noise and determine truly the direction in the parameter space to move.

Computing the Energy $E(\psi)$

• Using the Pauli decomposition we have:

 $E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1, \cdots, i_n} \langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$

where $\langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$ are the Pauli observables we estimated earlier

伺 ト イ ヨ ト イ ヨ ト

3

Computing the Energy $E(\psi)$

• Using the Pauli decomposition we have:

 $E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1, \cdots, i_n} \langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$

where $\langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$ are the Pauli observables we estimated earlier

- The accuracy of the energy estimate depends on the accuracy of individual terms, and the number of terms in the sum
- We will use this value as the "cost" of the state $|\psi
 angle$

Computing the Energy $E(\psi)$

• Using the Pauli decomposition we have:

 $E(\psi) = \langle \psi | \mathcal{H} | \psi \rangle = \sum c_{i_1, \cdots, i_n} \langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$

where $\langle \psi | P_1^{i_1} \otimes \cdots \otimes P_n^{i_n} | \psi \rangle$ are the Pauli observables we estimated earlier

- The accuracy of the energy estimate depends on the accuracy of individual terms, and the number of terms in the sum
- We will use this value as the "cost" of the state $|\psi\rangle$
- For the earlier example: $H = \frac{1}{\sqrt{2}} (X + Z)$ we need to estimate two observables:

 $\langle \psi | X | \psi \rangle = O_1 ; \langle \psi | Z | \psi \rangle = O_2$

Resulting to $E(\psi) = \frac{1}{\sqrt{2}} (O_1 + O_2)$

Step 3: The Ansatz (Family of Quantum States)

• • = • • = •

3

- To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**
- This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one **member of the family approx. well the ground state**.

- To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**
- This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one **member of the family approx. well the ground state**.
- Can view the ansatz as a family of parametrised quantum circuits: $|\psi(\vec{\theta})\rangle = U(\vec{\theta}) |0\rangle$
- The circuits U(\$\vec{\mathcal{\math\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{

- To solve the Hamiltonian problem we need to find the quantum state that has **minimum energy** from *all* the states of the **Hilbert space**
- This is **infeasible**. Instead, we select a family of (parametrised) quantum states, and we hope that one **member of the family approx. well the ground state**.
- Can view the ansatz as a family of parametrised quantum circuits: $|\psi(\vec{\theta})\rangle = U(\vec{\theta}) |0\rangle$
- The circuits U(\$\vec{\mathcal{\math\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{\mathcal{
- Two approaches: (i) Hardware Efficient, (ii) Problem Specific

(i) Hardware Efficient Ansatz

- Generate a family of states that spans evenly the Hilbert space
- Needs to be able to produced high entanglement
- Should choose circuits that are easy to implement with a given NISQ device
- Generic Ansatz that can be used for any Hamiltonian problem

(i) Hardware Efficient Ansatz

- Generate a family of states that spans evenly the Hilbert space
- Needs to be able to produced high entanglement
- Should choose circuits that are easy to implement with a given NISQ device
- Generic Ansatz that can be used for any Hamiltonian problem

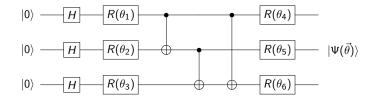
• Typical Ansatz:

- 1 A number of layers repeating the same circuit with different parameters
- 2 Single-qubit rotations parametrised by the rotation angle
- 3 Entangling gates (non-commuting with the rotations)
 Hardware architecture determines entanglement topology (all-to-all Vs nearest-neighbour)

伺下 イヨト イヨト

An Example: 3-qubit, 1-layer, all-to-all entanglement

 $\vec{\theta} := (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6)$



(ii) Problem Specific Ansatz

- Generate a family of states that uses the problem's Hamiltonian
- Does not span evenly the Hilbert space hopefully is **more dense around** the region we expect to have **the ground state**
- Not designed with the hardware in mind

(ii) Problem Specific Ansatz

- Generate a family of states that uses the problem's Hamiltonian
- Does not span evenly the Hilbert space hopefully is **more dense around** the region we expect to have **the ground state**
- Not designed with the hardware in mind
- Is theoretically more promising, but in practice may lead to more noisy results
- Many families exist (e.g. unitary coupled cluster, adiabatic, etc).

(ii) Problem Specific Ansatz

- Generate a family of states that uses the problem's Hamiltonian
- Does not span evenly the Hilbert space hopefully is **more dense around** the region we expect to have **the ground state**
- Not designed with the hardware in mind
- Is theoretically more promising, but in practice may lead to more noisy results
- Many families exist (e.g. unitary coupled cluster, adiabatic, etc).
- We give an important type suitable for optimisation problems:

Quantum Approximate Optimisation Algorithm (QAOA)

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let *H_C* be the **problem's Hamiltonian** of Ising type (only Pauli-Z, up to quadratic terms)

Recall Max-Cut: $\mathcal{H}_C = \sum_{(i,j) \in E} Z_i \otimes Z_j$

• Let $H_B = \sum_i X_i$ be the "mixer" Hamiltonian

何 ト イヨ ト イヨ ト

3

• Let *H_C* be the **problem's Hamiltonian** of Ising type (only Pauli-Z, up to quadratic terms)

Recall Max-Cut: $\mathcal{H}_C = \sum_{(i,j) \in E} Z_i \otimes Z_j$

- Let $H_B = \sum_i X_i$ be the "mixer" Hamiltonian
- A 1-layer QAOA ansatz is given by

 $e^{-i\beta H_B}e^{-i\gamma H_C}H^{\otimes n}\left|0\right\rangle^{\otimes n}$

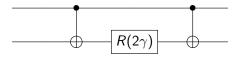
 A single layer has only two parameters (β, γ), irrespective of the number of qubits/width of computation

• The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$

• • = • • = •

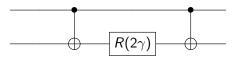
э

- The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$
- The problem Hamiltonian has terms Z_i ⊗ Z_j leading to unitaries e^{-iγZ_iZ_j}:



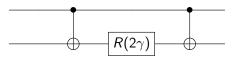
• • = • • = •

- The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$
- The problem Hamiltonian has terms Z_i ⊗ Z_j leading to unitaries e^{-iγZ_iZ_j}:



- Depending on interaction terms of H_C entangling gates can act on distant qubits
- Problem has to be Ising (i.e. only Pauli Z, and at most quadratic terms). Other cases can exist but ansatz becomes much harder to implement.

- The mixer Hamiltonian leads to single-qubit rotations $e^{-i\beta X_i}$
- The problem Hamiltonian has terms Z_i ⊗ Z_j leading to unitaries e^{-iγZ_iZ_j}:



- Depending on interaction terms of H_C entangling gates can act on distant qubits
- Problem has to be Ising (i.e. only Pauli Z, and at most quadratic terms). Other cases can exist but ansatz becomes much harder to implement.
- More layers repeat the above with fresh parameters (β_2, γ_2)

Step 4: Classical Optimisation & VQA Summary

< 回 > < 回 > < 回 >

æ

Moving Through Parameter Space

Given:

- Ansatz: set of q-states parametrised by classical parameters $\vec{ heta}$
- How to compute the "cost-function" $E(\vec{\theta}) = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$

Moving Through Parameter Space

Given:

- Ansatz: set of q-states parametrised by classical parameters $\vec{ heta}$
- How to compute the "cost-function" $E(\vec{\theta}) = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$

Task:

• Find the minimum (local or global).

Can use any classical optimisation technique

Moving Through Parameter Space

Given:

- Ansatz: set of q-states parametrised by classical parameters $\vec{\theta}$
- How to compute the "cost-function" $E(\vec{\theta}) = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$

Task:

• Find the minimum (local or global).

Can use any classical optimisation technique

Examples of Techniques Used:

- Gradient Descent
- Monte Carlo based
- Nelder-Mead method
- COBYLA (Constr. Optimiz. by Linear Approximation)
- Any deterministic or stochastic global optimisation method

Gradient Descent

• Trick to compute the gradient (generalises). Parametrised gates: $U_P = e^{-i\theta P}$ with P a Pauli (recall $P^2 = I$)

$$U_P(heta) = I\cos(heta) - iP\sin(heta); \ rac{\partial}{\partial heta} U_P(heta) = -iPe^{-i heta P}$$

leading to

$$\frac{\partial}{\partial \theta} E(\theta) = E(\theta + \frac{\pi}{4}) - E(\theta - \frac{\pi}{4})$$

Note: This difference is NOT infinitesimal!

• • = • • = •

Gradient Descent

• Trick to compute the gradient (generalises). Parametrised gates: $U_P = e^{-i\theta P}$ with P a Pauli (recall $P^2 = I$)

$$U_P(heta) = I\cos(heta) - iP\sin(heta); \ rac{\partial}{\partial heta} U_P(heta) = -iPe^{-i heta P}$$

leading to

$$\frac{\partial}{\partial \theta} E(\theta) = E(\theta + \frac{\pi}{4}) - E(\theta - \frac{\pi}{4})$$

Note: This difference is NOT infinitesimal!

- Move towards negative direction of the gradient: $\vec{\theta}_{i+1} = \vec{\theta}_i - \gamma \nabla E(\vec{\theta}_i)$; $\nabla E(\vec{\theta}_i) = \left(\partial_{\theta^1} E(\vec{\theta}), \partial_{\theta^2} E(\vec{\theta}), \partial_{\theta^3} E(\vec{\theta})\right)$
- Can find **local minima** (not global)

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$
- Generate a new guess $\vec{\theta'}$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta'})$

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$
- Generate a new guess $\vec{\theta'}$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta'})$
- If, $E(\vec{\theta'}) \leq E(\vec{\theta_0})$, keep guess and continue with $\vec{\theta_1} := \vec{\theta'}$

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$
- Generate a new guess $\vec{\theta'}$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta'})$
- If, $E(\vec{\theta'}) \leq E(\vec{\theta_0})$, keep guess and continue with $\vec{\theta_1} := \vec{\theta'}$
- Else, with probability $p_r = 1 e^{-\beta(E(\vec{\theta}) E(\vec{\theta}_0))}$, reject guess (make a fresh guess starting again from $\vec{\theta}_0$)
- With the remaining probability $p_a = e^{-\beta(E(\vec{\theta'}) E(\vec{\theta_0}))}$, keep guess and continue with $\vec{\theta_1} := \vec{\theta'}$

- Initial Guess $\vec{\theta}_0$ and compute $E(\vec{\theta}_0)$
- Generate a new guess $\vec{\theta'}$ (using any method, e.g. by varying a single parameter) and compute $E(\vec{\theta'})$
- If, $E(\vec{\theta'}) \leq E(\vec{\theta_0})$, keep guess and continue with $\vec{\theta_1} := \vec{\theta'}$
- Else, with probability $p_r = 1 e^{-\beta(E(\vec{\theta}) E(\vec{\theta}_0))}$, reject guess (make a fresh guess starting again from $\vec{\theta}_0$)
- With the remaining probability $p_a = e^{-\beta(E(\vec{\theta'}) E(\vec{\theta}_0))}$, keep guess and continue with $\vec{\theta_1} := \vec{\theta'}$

Observations

- May keep moving with greater new Energy (esc local min)
- Keeping probability reduces with Energy difference
- β is "inverse temperature". Can increase value with iteration steps β(i) (so it stabilises in time)

- Resources:
- Repetitions per round (accuracy desired)
- Optimisation rounds (classical optimisation problem)

(E)

• Resources:

- Repetitions per round (accuracy desired)
- Optimisation rounds (classical optimisation problem)

• Effect of noise:

- Greater repetitions to achieve desired accuracy
- Potentially systematic errors in estimating cost

• Resources:

- Repetitions per round (accuracy desired)
- Optimisation rounds (classical optimisation problem)

• Effect of noise:

- Greater repetitions to achieve desired accuracy
- Potentially systematic errors in estimating cost

• Possible Failures:

- Converge to local minimum
- Fail to conv. (Flat Landscape a.e.) "Barren Plateau"

• Resources:

- Repetitions per round (accuracy desired)
- Optimisation rounds (classical optimisation problem)

• Effect of noise:

- Greater repetitions to achieve desired accuracy
- Potentially systematic errors in estimating cost

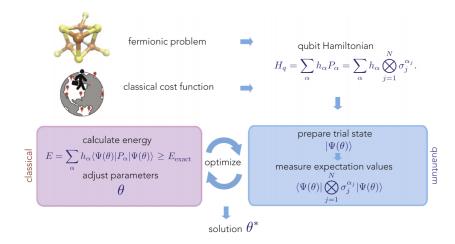
• Possible Failures:

- Converge to local minimum
- Fail to conv. (Flat Landscape a.e.) "Barren Plateau"

• Overall limitations (heuristics):

- Not exact complexity
- No guarantee for obtaining solution

VQA Pictorially



Taken from: Nikolaj Moll et al 2018 Quantum Sci. Technol. 3 030503

- Hybrid Quantum-Classical Algorithms
- Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

- Hybrid Quantum-Classical Algorithms
- Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

 Map problem to ground state energy of some Hamiltonian H (classical)

- Hybrid Quantum-Classical Algorithms
- Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

- Map problem to ground state energy of some Hamiltonian H (classical)
- 2 Can generate (efficiently) a family of states $|\Psi(\vec{\theta})\rangle$ (quantum)
- Can compute expectation value $E_{\vec{\theta}} = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$ with local Pauli measurement for any guess $\vec{\theta}$ (quantum)

- Hybrid Quantum-Classical Algorithms
- Quantum Part needs small coherence time, works without QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

- Map problem to ground state energy of some Hamiltonian H (classical)
- 2 Can generate (efficiently) a family of states $|\Psi(\vec{\theta})\rangle$ (quantum)
- Can compute expectation value $E_{\vec{\theta}} = \langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$ with local Pauli measurement for any guess $\vec{\theta}$ (quantum)
- Comparing *E*(*θ*) of existing points, evaluate a new guess *θ*' using standard techniques.
 Feedback to step 2 to evaluate *E*(*θ*') (classical)

Variational Quantum Algorithms Reviews

- Variational quantum algorithms, Cerezo, Marco, et al. Nature Reviews Physics (2021): 1-20.
- Noisy intermediate-scale quantum (NISQ) algorithms, Bharti, Kishor, et al. arXiv preprint arXiv:2101.08448 (2021).
- Quantum optimization using variational algorithms on near-term quantum devices, Moll, Nikolaj, et al. Quantum Science and Technology 3.3 (2018): 030503.