Introduction to Quantum Computing Lecture 23: Measurement-Based Quantum Computing (MBQC) I

Petros Wallden

School of Informatics, University of Edinburgh

6th November 2024

Measurement-Based Quantum Computing:

What, Why & How

- **2** The $J(\theta)$ quantum gate
- MBQC as Universal Model of Quantum Computation

伺 ト イヨ ト イヨト

Measurement-Based Quantum Computing:

What, Why & How

イロト イヨト イヨト イヨト

3

MBQC: What (Model of Quantum Computation)

Circuit. Basic mechanism:

- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- Resource Cost: Number of Gates

MBQC: What (Model of Quantum Computation)

Circuit. Basic mechanism:

- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- Resource Cost: Number of Gates

MBQC. (also known as **one-way quantum computer**). Basic mechanism:

- Start with a large (generic) entangled state consisting of multiple qubits
- Make single-qubit measurements in suitably chosen bases (depending on the computation).
 Single-qubit measurements are easy to perform.
- Resource Cost: Entanglement "consumed"

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- For certain quantum hardware and architectures is easier to implement (e.g. photonic)
- Has alternative **ways to treat fault-tolerance** and error correction (potentially advantageous)
- Certain **applications** are easier in MBQC (see later Lecture for crypto related)
- Foundationally a different perspective (e.g. the role of contextuality or certain complexity theoretic implications can be better seen in MBQC).

通 と く ヨ と く ヨ と

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- 2 Measure the unknown qubit

• • = • • = •

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- Measure the unknown qubit

Result: The information of the unknown state is "teleported" to the second qubit with an extra gate applied (see later).

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- 2 Measure the unknown qubit

Result: The information of the unknown state is "teleported" to the second qubit with an extra gate applied (see later).

General MBQC "Ingredients":

- Large entangled quantum state with many qubits (resource state) "consumed" during the computation.
 Easy to prepare and same for different computations.
- Perform computation by single qubit measurements (easy to implement).

< 同 > < 三 > < 三 > -

- What **resource state** and what **measurements** are needed to implement a universal set of gates?
- How to combine those gates for universal computation?
- Does the order of measurements matters? Can we parallelise some of these measurements?
- How to include an (unknown) quantum state $|\psi_0
 angle$ as input?

(Ans: Entangle this state at one side of the resource. Then measure **all** qubits, one-by-one.)

• • • • • • • •

A: Resource States

- Entangled states used are called graph states.
- Given graph G = (V, E) with vertices V and edges E

A: Resource States

- Entangled states used are called graph states.
- Given graph G = (V, E) with vertices V and edges E

- Place at each vertex a qubit at |+
 angle
- For each edge apply $\wedge Z$ to entangle the vertices Resulting state: $|G\rangle = \prod_{(a,b)\in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V}$

A: Resource States

- Entangled states used are called graph states.
- Given graph G = (V, E) with vertices V and edges E

- Place at each vertex a qubit at |+
 angle
- For each edge apply $\wedge Z$ to entangle the vertices Resulting state: $|G\rangle = \prod_{(a,b)\in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V}$ Note: $\wedge Z$'s commute, so order does not matter

Remarks:

- If the graph used is subset of *d*-dimensional lattice the state are also known as **cluster states**.
- Graph states are highly entangled between **all** qubits. Entanglement remains after measuring some qubits
- Entanglement is "consumed" during the computation \Rightarrow **resource** of the computation.

Remarks:

- If the graph used is subset of *d*-dimensional lattice the state are also known as **cluster states**.
- Graph states are highly entangled between **all** qubits. Entanglement remains after measuring some qubits
- Entanglement is "consumed" during the computation \Rightarrow **resource** of the computation.

Is called **one-way quantum computation**, since the resource is consumed during the computation \Rightarrow non-reversible.

B: Measurements

- Single-qubit measurements
 Subscript denotes qubit measured
 Superscript denotes basis of measurement
- Bases used:

$$M_i^{\theta} = \{ \ket{+_{\theta}}, \ket{-_{\theta}} \}$$
 for all θ and $M_i^z = \{ \ket{0}, \ket{1} \}$

Recall that $\ket{\pm_{ heta}} = rac{1}{\sqrt{2}} (\ket{0} \pm e^{i heta} \ket{1})$

The role of the Z measurement will be explained later

Measurements have binary outcome, for qubit j we denote the one outcome s_j = 0 and the second s_j = 1

- Measurement outcomes are random. To achieve deterministic outcome (unitary), we need to adapt the measurement angles to "cancel" the randomness of previous measurements.
- The (partial) **order** of measurements and **adaptivity** will be explored in the next lecture.
- Here we see how to obtain in MBQC the "J(θ)" universal gate-set, up to certain "corrections"

1 The $|\pm_{\theta}\rangle$ -basis. For all θ we define:

$$\ket{+_{ heta}} = rac{1}{\sqrt{2}} \left(\ket{0} + e^{i heta} \ket{1}
ight), \quad \ket{-_{ heta}} = rac{1}{\sqrt{2}} \left(\ket{0} - e^{i heta} \ket{1}
ight)$$

Note: $\{ |+_{\theta}\rangle, |-_{\theta}\rangle \}$ is a basis and $\theta = 0$ is the $|\pm\rangle$ -basis.

$$|0
angle = rac{1}{\sqrt{2}}\left(|+_{ heta}
angle + |-_{ heta}
angle
ight), \hspace{0.2cm} |1
angle = rac{1}{\sqrt{2}}e^{-i heta}\left(|+_{ heta}
angle - |-_{ heta}
angle
ight)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

2 The $J(\theta)$ universal gate-set:

The set of quantum gates $\{\land Z, J(\theta) \text{ for all } \theta\}$ is universal

2 The $J(\theta)$ universal gate-set:

The set of quantum gates { $\land Z, J(\theta)$ for all θ } is universal Recall: $R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$

We define the Hadamard rotated phase gate:

$$J(heta) = HR(heta) = rac{1}{\sqrt{2}} egin{bmatrix} 1 & e^{i heta} \ 1 & -e^{i heta} \end{bmatrix}$$

2 The $J(\theta)$ universal gate-set:

The set of quantum gates { $\land Z, J(\theta)$ for all θ } is universal Recall: $R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$

We define the Hadamard rotated phase gate:

$$J(heta) = HR(heta) = rac{1}{\sqrt{2}} egin{bmatrix} 1 & e^{i heta} \ 1 & -e^{i heta} \end{bmatrix}$$

- Any single-qubit unitary gate can be decomposed as:

$$U = J(0)J(\theta_1)J(\theta_2)J(\theta_3)$$

for some $\theta_1, \theta_2, \theta_3$

- For universal set we need a two-qubit gate: $\wedge Z$

3 The |H⟩ maximally entangled state: Recall the controlled-Z gate (∧Z)

 $\wedge Z \ket{i} \ket{j} = (-1)^{ij} \ket{i} \ket{j}$

is symmetric w.r.t. inputs (unlike $\wedge X |i\rangle |j\rangle = |i\rangle |i \oplus j\rangle$) We define:

$$\ket{H}:=\wedge Z\ket{+}\otimes\ket{+}=rac{1}{2}\left(\ket{00}+\ket{01}+\ket{10}-\ket{11}
ight)$$

This state is maximally entangled:

$$\ket{H} = rac{1}{\sqrt{2}} (\ket{0}\ket{+} + \ket{1}\ket{-}) = rac{1}{\sqrt{2}} (\ket{+}\ket{0} + \ket{-}\ket{1})$$

 $|H\rangle = (\mathbb{I} \otimes H) |\Phi^+\rangle = (H \otimes \mathbb{I}) |\Phi^+\rangle = \wedge Z |+\rangle \otimes |+\rangle$

Note1: $\wedge Z$ acts on $|+\rangle$'s entangles qubits symmetrically Note2: The $|H\rangle$ is a two-qubit state not to be confused with the Hadamard operator H.

The $J(\theta)$ quantum gate

ヘロト ヘロト ヘヨト ヘヨト

2

It is called "Measurement Pattern"

• Resource State:

- A graph with labelled vertices (qubits)
- Set of vertices that are **input** and **output** of the computation

Unless stated otherwise: inputs are on the left-hand side; outputs are on the right-hand side (and are not-measured)

Measurements:

Angles that each qubit is measured are denoted on the vertex

In general, angles need to be adaptively corrected. Denoted angles are the "default" un-corrected ones (see next lecture)

Gate Teleportation: We start with unknown state $|\psi\rangle_1 = a |0\rangle_1 + b |1\rangle_1$ plugged in the following MBQC pattern:

The total state after entangling ($\wedge Z$) becomes:

 $|\phi
angle_{12} := \wedge Z_{12} \left(|\psi
angle_1 \otimes |+
angle_2\right) = a |0+
angle_{12} + b |1angle_{12}$

伺 ト イ ヨ ト イ ヨ ト

To see the effect of the measurement M^θ₁, we express qubit 1 (that is to be measured) in the corresponding |±_θ⟩ basis (see expansion of |0⟩, |1⟩ in this basis):

$$\begin{aligned} |\phi\rangle_{12} &= \frac{a}{\sqrt{2}} (|+_{\theta}\rangle_{1} + |-_{\theta}\rangle_{1}) |+\rangle_{2} + \frac{b}{\sqrt{2}} e^{-i\theta} (|+_{\theta}\rangle_{1} - |-_{\theta}\rangle_{1}) |-\rangle_{2} \\ &= \frac{1}{\sqrt{2}} |+_{\theta}\rangle_{1} (a |+\rangle_{2} + b e^{-i\theta} |-\rangle_{2}) + \\ &+ \frac{1}{\sqrt{2}} |-_{\theta}\rangle_{1} (a |+\rangle_{2} - b e^{-i\theta} |-\rangle_{2}) \end{aligned}$$
(1)

• We can re-express now the state of **qubit 2** in each of the two terms in the RHS of Eq **??**

• We note that the first term can be written as:

$$HR(- heta)\left(a\ket{0}+b\ket{1}
ight)=H\left(a\ket{0}+be^{-i heta}\ket{1}
ight)=a\ket{+}+be^{-i heta}\ket{-}$$

• and that the second term can be written as:

$$X\!H\!R(- heta)\left(a \left| 0
ight
angle + b \left| 1
ight
angle
ight) = Xa \left| +
ight
angle \!+\! Xbe^{-i heta} \left| -
ight
angle = a \left| +
ight
angle \!- be^{-i heta} \left| -
ight
angle$$

We therefore have:

$$\left|\phi\right\rangle_{12} = \left|+_{\theta}\right\rangle_{1} \left(X_{2}\right)^{0} J(-\theta)_{2} \left|\psi\right\rangle_{2} + \left|-_{\theta}\right\rangle_{1} \left(X_{2}\right)^{1} J(-\theta)_{2} \left|\psi\right\rangle_{2}$$

- We can see that measuring **qubit 1** in the M^θ₁-basis we end-up with **qubit 2** being at the state X^{s₁}J(-θ) |ψ⟩, where s₁ is the outcome of qubit's 1 measurement.
- Interpretation: We have teleported the state $|\psi\rangle_1$ to qubit 2, and in the same time we have applied on it, the gate $J(-\theta)$ along with an extra operation X^{s_1} that depends on the previous measurement outcome
- To restore "determinism" we need to "cancel" the gate X^{s1}, something that is possible by adapting the measurement angles (see next lecture)

伺 と く ヨ と く ヨ と

The $J(\theta)$ single-qubit gate: Summary

The above measurement pattern results to:

 $X^{s_1}J(-\theta) |\psi\rangle_2 = X^{s_1}HR(-\theta) |\psi\rangle_2$

Examples:

- $\theta = 0$: Output $X^{s_1} H |\psi\rangle_2$
- $\theta = \pi$: Output $X^{s_1}HZ |\psi\rangle_2$

• $\theta = \pi/2$: Output $X^{s_1}HR(-\pi/2) |\psi\rangle_2 = X^{s_1}H\begin{pmatrix} 1 & 0\\ 0 & -i \end{pmatrix} |\psi\rangle_2$

伺 ト イヨ ト イヨ ト

MBQC as Universal Model of Quantum Computation

ヘロト ヘロト ヘヨト ヘヨト

э

How to apply consecutively two $J(\theta)$ -gates:

commute (can be performed in arbitrary order)

How to apply consecutively two $J(\theta)$ -gates:

Operators (or measurements) acting on **different** subsystems commute (can be performed in arbitrary order)

We can break the pattern of the figure to two steps:

 Consider qubit 1 and qubit 2 alone: Prepare these qubits, entangle them and measure qubit 1 (see previous example)

How to apply consecutively two $J(\theta)$ -gates:

Operators (or measurements) acting on **different** subsystems commute (can be performed in arbitrary order)

We can break the pattern of the figure to two steps:

- Consider qubit 1 and qubit 2 alone: Prepare these qubits, entangle them and measure qubit 1 (see previous example)
- Then prepare qubit 3 entangle qubit 2 with qubit 3 and measure qubit 2.

Step 2 is again the $J(-\theta)$ -gate but has as input **qubit 2** in the state produced in step 1.

In more details the two steps:

1 The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

 $|s_1\rangle \otimes X_2^{s_1}H_2R_2(-\theta_1)|\psi\rangle_2 = |s_1\rangle \otimes X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$

2 The input was $X_2^{s_1} J_2(-\theta_1) |\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

 $|s_2
angle\otimes X_3^{s_2}J_3(- heta_2)(X_3^{s_1}J_3(- heta_1)|\psi
angle_3)$

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

In more details the two steps:

• The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

 $\ket{s_1} \otimes X_2^{s_1} H_2 R_2(-\theta_1) \ket{\psi}_2 = \ket{s_1} \otimes X_2^{s_1} J_2(-\theta_1) \ket{\psi}_2$

2 The input was $X_2^{s_1} J_2(-\theta_1) |\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

 $|s_2
angle\otimes X_3^{s_2}J_3(- heta_2)(X_3^{s_1}J_3(- heta_1)|\psi
angle_3)$

The "corrections" X^{s_1}, X^{s_2} will be dealt at next lecture in the general case.

Now note that the output (**qubit 3**) is now at the state $|\psi\rangle$ with the gates $J(-\theta_2)J(-\theta_1)$ applied.

In more details the two steps:

1 The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

 $|s_1\rangle \otimes X_2^{s_1}H_2R_2(-\theta_1)|\psi\rangle_2 = |s_1\rangle \otimes X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$

2 The input was $X_2^{s_1} J_2(-\theta_1) |\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

 $|s_2
angle\otimes X_3^{s_2}J_3(- heta_2)(X_3^{s_1}J_3(- heta_1)|\psi
angle_3)$

The "corrections" X^{s_1}, X^{s_2} will be dealt at next lecture in the general case.

Now note that the output (**qubit 3**) is now at the state $|\psi\rangle$ with the gates $J(-\theta_2)J(-\theta_1)$ applied.

• (Standard) Teleportation: Case $\theta_1 = \theta_2 = 0$: $X_3^{s_2}H_3X_3^{s_1}H_3 |\psi\rangle_3 = X_3^{s_2}Z_3^{s_1}H_3H_3 |\psi\rangle = X_3^{s_2}Z_3^{s_1} |\psi\rangle$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

 $U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$

• This pattern results to (step by step):

```
\ket{s_1}\otimes X^{s_1}J(-	heta_1)\ket{\psi}
```

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

 $U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$

• This pattern results to (step by step):

 $|s_1
angle\otimes|s_2
angle\otimes X^{s_2}J(- heta_2)X^{s_1}J(- heta_1)|\psi
angle$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

 $U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$

• This pattern results to (step by step):

 $|s_1
angle\otimes|s_2
angle\otimes|s_3
angle\otimes X^{s_3}J(- heta_3)X^{s_2}J(- heta_2)X^{s_1}J(- heta_1)\ket{\psi}$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

 $U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$

• This pattern results to (step by step):

 $|\mathfrak{s}_1
angle\otimes|\mathfrak{s}_2
angle\otimes|\mathfrak{s}_3
angle\otimes|\mathfrak{s}_4
angle\otimes X^{\mathfrak{s}_4}J(0)X^{\mathfrak{s}_3}J(- heta_3)X^{\mathfrak{s}_2}J(- heta_2)X^{\mathfrak{s}_1}J(- heta_1)\ket{\psi}$

Two Qubit Gates

- What is missing to achieve the universal J(θ) gate-set is a way to implement the ΛZ-gate.
- We already have the $\wedge Z$ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)

Two Qubit Gates

- What is missing to achieve the universal J(θ) gate-set is a way to implement the ∧Z-gate.
- We already have the $\wedge Z$ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)
- Information "flows" as qubits are teleported through the measurement pattern
- Entangling should happen without obstructing the "flow" (teleportation path)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Two Qubit Gates

- What is missing to achieve the universal J(θ) gate-set is a way to implement the ∧Z-gate.
- We already have the $\wedge Z$ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)
- Information "flows" as qubits are teleported through the measurement pattern
- Entangling should happen without obstructing the "flow" (teleportation path)
- Horizontal $\wedge Z$ is used to teleport information (and gates)
- Vertical $\wedge Z$ is used as the 2-qubit gate.

・ 同 ト ・ ヨ ト ・ ヨ ト

We will ignore the corrections (assume all s_i 's are zero). We will see step by step the patern:

We will ignore the corrections (assume all s_i 's are zero).

We will see step by step the patern:

We will ignore the corrections (assume all s_i 's are zero). We will see step by step the patern:

Example: details

• Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

 $\ket{s_1}_1 \otimes X_3^{s_1} H_3 \ket{\psi}_3$

Onsider qubit 2 and qubit 4 (the effect of measuring qubit 1).

 $\ket{s_2}_2 \otimes X_4^{s_2} H_4 \ket{\phi}_4$

• We apply a $\wedge Z$ on the qubits 3 and 4.

 $\ket{s_1}_1 \otimes \ket{s_2} \otimes \wedge Z_{34} \left(X_3^{s_1} H_3 \ket{\psi}_3 \otimes X_4^{s_2} H_4 \ket{\phi}_4 \right)$

Example: details

• Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

 $\ket{s_1}_1 \otimes X_3^{s_1} H_3 \ket{\psi}_3$

Onsider qubit 2 and qubit 4 (the effect of measuring qubit 1).

 $\ket{s_2}_2 \otimes X_4^{s_2} H_4 \ket{\phi}_4$

• We apply a $\wedge Z$ on the qubits 3 and 4.

 $|s_1\rangle_1 \otimes |s_2\rangle \otimes \wedge Z_{34} \left(X_3^{s_1}H_3 |\psi\rangle_3 \otimes X_4^{s_2}H_4 |\phi\rangle_4\right)$

- The corrections (X's that depend on measurement outcomes) will be formally treated later (L16)
- The net effect (baring corrections setting $s_i = 0$) is:

 $(\wedge Z) (H \otimes H) (\ket{\psi} \otimes \ket{\phi})$

同 ト イヨ ト イヨ ト ニヨ

• We have measurement pattern for the $J(-\theta)$ gate:

Input qubit entangled with another one and measured in the M^{θ} basis

伺 ト イヨ ト イヨト

• We have measurement pattern for the $J(-\theta)$ gate:

Input qubit entangled with another one and measured in the M^{θ} basis

• General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$

• We have measurement pattern for the $J(-\theta)$ gate:

Input qubit entangled with another one and measured in the M^{θ} basis

- General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$
- For two-qubit gate, we use ∧Z that is already in the graph state, but:

Need to apply it "vertically" to avoid obstructing the "flow" of the computation

伺 ト イヨ ト イヨ ト

• We have measurement pattern for the $J(-\theta)$ gate:

Input qubit entangled with another one and measured in the M^{θ} basis

- General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$
- For two-qubit gate, we use ∧Z that is already in the graph state, but:

Need to apply it "vertically" to avoid obstructing the "flow" of the computation $% \left({{{\left[{{{\rm{con}}} \right]}_{\rm{con}}}_{\rm{con}}} \right)$

• Next Lecture: formally how to treat "corrections" and resort deterministic application of gates!

Further Reading

- One-way Quantum Computation a tutorial introduction, D. Browne and H. Briegel, arxiv:quant-ph/0603226
- An introduction to measurement based quantum computation, R. Jozsa, arxiv:quant-ph/0508124
- Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments, S. Barz, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol 48, Num. 8 (2015).
- Chapter 7, Semantic Techniques in Quantum Computation Editors Simon Gay and Ian Mackie

「ヨト・ヨト・ヨト