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This Lecture

1 Measurement-Based Quantum Computing:

What, Why & How

2 The J(θ) quantum gate

3 MBQC as Universal Model of Quantum Computation
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Part I

Measurement-Based Quantum Computing:

What, Why & How
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MBQC: What (Model of Quantum Computation)

Circuit. Basic mechanism:

Evolve unitarily qubits through a circuit by applying on the
qubits the gates one-by-one

Measure (read-out) at the end to convert quantum
information to classical

Resource Cost: Number of Gates

MBQC. (also known as one-way quantum computer).
Basic mechanism:

Start with a large (generic) entangled state consisting of
multiple qubits

Make single-qubit measurements in suitably chosen bases
(depending on the computation).
Single-qubit measurements are easy to perform.

Resource Cost: Entanglement “consumed”
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MBQC: Why

For certain quantum hardware and architectures is easier
to implement (e.g. photonic)

Has alternative ways to treat fault-tolerance and error
correction (potentially advantageous)

Certain applications are easier in MBQC (see later Lecture
for crypto related)

Foundationally a different perspective (e.g. the role of
contextuality or certain complexity theoretic implications can
be better seen in MBQC).
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MBQC: How (The General Idea)

Gate Teleportation.

1 Entangle unknown qubit with a fixed qubit

2 Measure the unknown qubit

Result: The information of the unknown state is “teleported” to
the second qubit with an extra gate applied (see later).

General MBQC “Ingredients”:

1 Large entangled quantum state with many qubits (resource
state) – “consumed” during the computation.
Easy to prepare and same for different computations.

2 Perform computation by single qubit measurements (easy
to implement).
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MBQC: What do we need?

What resource state and what measurements are needed to
implement a universal set of gates?

How to combine those gates for universal computation?

Does the order of measurements matters? Can we parallelise
some of these measurements?

How to include an (unknown) quantum state |ψ0⟩ as input?

(Ans: Entangle this state at one side of the resource. Then
measure all qubits, one-by-one.)

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Resource States and Measurements

A: Resource States

Entangled states used are called graph states.

Given graph G = (V ,E ) with vertices V and edges E

Place at each vertex a qubit at |+⟩
For each edge apply ∧Z to entangle the vertices

Resulting state: |G ⟩ =
∏

(a,b)∈E ∧Z (a,b) |+⟩⊗V

Note: ∧Z ’s commute, so order does not matter
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Resource States and Measurements

Remarks:

If the graph used is subset of d-dimensional lattice the state
are also known as cluster states.

Graph states are highly entangled between all qubits.
Entanglement remains after measuring some qubits

Entanglement is “consumed” during the computation ⇒
resource of the computation.

Is called one-way quantum computation, since the resource
is consumed during the computation ⇒ non-reversible.
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Resource States and Measurements

B: Measurements

Single-qubit measurements
Subscript denotes qubit measured
Superscript denotes basis of measurement

Bases used:

Mθ
j = {|+θ⟩ , |−θ⟩} for all θ and Mz

j = {|0⟩ , |1⟩}

Recall that |±θ⟩ = 1√
2
(|0⟩ ± e iθ |1⟩)

The role of the Z measurement will be explained later

Measurements have binary outcome, for qubit j we denote the
one outcome sj = 0 and the second sj = 1
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Resource States and Measurements

Measurement outcomes are random. To achieve deterministic
outcome (unitary), we need to adapt the measurement angles
to “cancel” the randomness of previous measurements.

The (partial) order of measurements and adaptivity will be
explored in the next lecture.

Here we see how to obtain in MBQC the “J(θ)” universal
gate-set, up to certain “corrections”
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Some Useful Background

1 The |±θ⟩-basis. For all θ we define:

|+θ⟩ =
1√
2

(
|0⟩+ e iθ |1⟩

)
, |−θ⟩ =

1√
2

(
|0⟩ − e iθ |1⟩

)
Note: {|+θ⟩ , |−θ⟩} is a basis and θ = 0 is the |±⟩-basis.

|0⟩ = 1√
2
(|+θ⟩+ |−θ⟩) , |1⟩ = 1√

2
e−iθ (|+θ⟩ − |−θ⟩)
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Some Useful Background

2 The J(θ) universal gate-set:

The set of quantum gates {∧Z , J(θ) for all θ} is universal

Recall: R(θ) =

[
1 0
0 e iθ

]
We define the Hadamard rotated phase gate:

J(θ) = HR(θ) =
1√
2

[
1 e iθ

1 −e iθ

]
- Any single-qubit unitary gate can be decomposed as:

U = J(0)J(θ1)J(θ2)J(θ3)

for some θ1, θ2, θ3

- For universal set we need a two-qubit gate: ∧Z
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Some Useful Background

3 The |H⟩ maximally entangled state:
Recall the controlled-Z gate (∧Z )

∧Z |i⟩ |j⟩ = (−1)ij |i⟩ |j⟩

is symmetric w.r.t. inputs (unlike ∧X |i⟩ |j⟩ = |i⟩ |i ⊕ j⟩)
We define:

|H⟩ := ∧Z |+⟩ ⊗ |+⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩)

This state is maximally entangled:

|H⟩ = 1√
2
(|0⟩ |+⟩+ |1⟩ |−⟩) = 1√

2
(|+⟩ |0⟩+ |−⟩ |1⟩)

|H⟩ = (I⊗ H) |Φ+⟩ = (H ⊗ I) |Φ+⟩ = ∧Z |+⟩ ⊗ |+⟩

Note1: ∧Z acts on |+⟩’s entangles qubits symmetrically
Note2: The |H⟩ is a two-qubit state not to be confused with
the Hadamard operator H.
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Part II

The J(θ) quantum gate
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Expressing an MBQC computation

It is called “Measurement Pattern”

Resource State:

- A graph with labelled vertices (qubits)

- Set of vertices that are input and output of the computation

Unless stated otherwise: inputs are on the left-hand side;
outputs are on the right-hand side (and are not-measured)

Measurements:

Angles that each qubit is measured are denoted on the vertex

In general, angles need to be adaptively corrected. Denoted
angles are the “default” un-corrected ones (see next lecture)
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The J(θ) single-qubit gate

Gate Teleportation: We start with unknown state
|ψ⟩1 = a |0⟩1 + b |1⟩1 plugged in the following MBQC pattern:

|ψ⟩1

M(θ), s1

|+⟩2

The J(−θ)-gate MBQC pattern

The total state after entangling (∧Z ) becomes:

|ϕ⟩12 := ∧Z12 (|ψ⟩1 ⊗ |+⟩2) = a |0+⟩12 + b |1−⟩12
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The J(θ) single-qubit gate

To see the effect of the measurement Mθ
1 , we express qubit 1

(that is to be measured) in the corresponding |±θ⟩ basis (see
expansion of |0⟩ , |1⟩ in this basis):

|ϕ⟩12 =
a√
2
(|+θ⟩1 + |−θ⟩1) |+⟩2 +

b√
2
e−iθ(|+θ⟩1 − |−θ⟩1) |−⟩2

=
1√
2
|+θ⟩1 (a |+⟩2 + be−iθ |−⟩2)+

+
1√
2
|−θ⟩1 (a |+⟩2 − be−iθ |−⟩2) (1)

We can re-express now the state of qubit 2 in each of the two
terms in the RHS of Eq ??
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The J(θ) single-qubit gate

We note that the first term can be written as:

HR(−θ) (a |0⟩+ b |1⟩) = H
(
a |0⟩+ be−iθ |1⟩

)
= a |+⟩+be−iθ |−⟩

and that the second term can be written as:

XHR(−θ) (a |0⟩+ b |1⟩) = Xa |+⟩+Xbe−iθ |−⟩ = a |+⟩−be−iθ |−⟩

We therefore have:

|ϕ⟩12 = |+θ⟩1 (X2)
0J(−θ)2 |ψ⟩2 + |−θ⟩1 (X2)

1J(−θ)2 |ψ⟩2
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The J(θ) single-qubit gate

We can see that measuring qubit 1 in the Mθ
1 -basis we

end-up with qubit 2 being at the state X s1J(−θ) |ψ⟩, where
s1 is the outcome of qubit’s 1 measurement.

Interpretation: We have teleported the state |ψ⟩1 to qubit
2, and in the same time we have applied on it, the gate J(−θ)
along with an extra operation X s1 that depends on the
previous measurement outcome

To restore “determinism” we need to “cancel” the gate X s1 ,
something that is possible by adapting the measurement
angles (see next lecture)
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The J(θ) single-qubit gate: Summary

|ψ⟩1

M(θ), s1

|+⟩2

The J(−θ)-gate MBQC pattern

The above measurement pattern results to:

X s1J(−θ) |ψ⟩2 = X s1HR(−θ) |ψ⟩2
Examples:

θ = 0: Output X s1H |ψ⟩2
θ = π: Output X s1HZ |ψ⟩2

θ = π/2: Output X s1HR(−π/2) |ψ⟩2 = X s1H

(
1 0
0 −i

)
|ψ⟩2

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Part III

MBQC as Universal Model of Quantum Computation
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Composing single-qubit measurement patterns

How to apply consecutively two J(θ)-gates:

|ψ⟩1

θ1, s1

|+⟩2

θ2, s2

|+⟩3

The (J(−θ2)J(−θ1))-gate MBQC pattern

Operators (or measurements) acting on different subsystems
commute (can be performed in arbitrary order)

We can break the pattern of the figure to two steps:

1 Consider qubit 1 and qubit 2 alone: Prepare these qubits,
entangle them and measure qubit 1 (see previous example)

2 Then prepare qubit 3 entangle qubit 2 with qubit 3 and
measure qubit 2.

Step 2 is again the J(−θ)-gate but has as input qubit 2 in
the state produced in step 1.
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Composing single-qubit measurement patterns

How to apply consecutively two J(θ)-gates:

|s1⟩1 X s1J(−θ1) |ψ⟩2

θ2, s2

|+⟩3

Step 2: after measuring qubit 1

Operators (or measurements) acting on different subsystems
commute (can be performed in arbitrary order)
We can break the pattern of the figure to two steps:

1 Consider qubit 1 and qubit 2 alone: Prepare these qubits,
entangle them and measure qubit 1 (see previous example)

2 Then prepare qubit 3 entangle qubit 2 with qubit 3 and
measure qubit 2.

Step 2 is again the J(−θ)-gate but has as input qubit 2 in
the state produced in step 1.
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Composing single-qubit measurement patterns

In more details the two steps:

1 The input was |ψ⟩1, measurement angle θ1 and outcome s1:

|s1⟩ ⊗ X s1
2 H2R2(−θ1) |ψ⟩2 = |s1⟩ ⊗ X s1

2 J2(−θ1) |ψ⟩2
2 The input was X s1

2 J2(−θ1) |ψ⟩2 (we can ignore qubit 1 now
that is measured), measurement angle θ2 and outcome s2:

|s2⟩ ⊗ X s2
3 J3(−θ2)(X s1

3 J3(−θ1) |ψ⟩3)

The “corrections” X s1 ,X s2 will be dealt at next lecture in the
general case.

Now note that the output (qubit 3) is now at the state |ψ⟩
with the gates J(−θ2)J(−θ1) applied.

(Standard) Teleportation: Case θ1 = θ2 = 0:

X s2
3 H3X

s1
3 H3 |ψ⟩3 = X s2

3 Z s1
3 H3H3 |ψ⟩ = X s2

3 Z s1
3 |ψ⟩
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General Single-Qubit Gate

Any single-qubit gate can be implemented repeating the J(θ)
pattern since any single-qubit unitary can be written using three
angles θ1, θ2, θ3

U = J(0)J(−θ3)J(−θ2)J(−θ1)

|ψ⟩1

θ1, s1

|+⟩2

θ2, s2

|+⟩3

θ3, s3

|+⟩4

0, s4

|+⟩5

A general single-qubit gaete: MBQC pattern

This pattern results to (step by step):

|s1⟩ ⊗ X s1J(−θ1) |ψ⟩⊗ |s3⟩ ⊗ |s4⟩⊗X s4J(0)X s3J(−θ3)X s2J(−θ2)X s1J(−θ1) |ψ⟩5
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Two Qubit Gates

What is missing to achieve the universal J(θ) gate-set is a
way to implement the ∧Z -gate.

We already have the ∧Z -gate in our generating graph process

Care is needed, as it should be applied to qubits not already
measured (2-dim measurement pattern)

Information “flows” as qubits are teleported through the
measurement pattern

Entangling should happen without obstructing the “flow”
(teleportation path)

Horizontal ∧Z is used to teleport information (and gates)

Vertical ∧Z is used as the 2-qubit gate.

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Two Qubit Gates

What is missing to achieve the universal J(θ) gate-set is a
way to implement the ∧Z -gate.

We already have the ∧Z -gate in our generating graph process

Care is needed, as it should be applied to qubits not already
measured (2-dim measurement pattern)

Information “flows” as qubits are teleported through the
measurement pattern

Entangling should happen without obstructing the “flow”
(teleportation path)

Horizontal ∧Z is used to teleport information (and gates)

Vertical ∧Z is used as the 2-qubit gate.

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Two Qubit Gates

What is missing to achieve the universal J(θ) gate-set is a
way to implement the ∧Z -gate.

We already have the ∧Z -gate in our generating graph process

Care is needed, as it should be applied to qubits not already
measured (2-dim measurement pattern)

Information “flows” as qubits are teleported through the
measurement pattern

Entangling should happen without obstructing the “flow”
(teleportation path)

Horizontal ∧Z is used to teleport information (and gates)

Vertical ∧Z is used as the 2-qubit gate.

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Example: Two Qubit Gate

We will ignore the corrections (assume all si ’s are zero).

We will see step by step the patern:

|ψ⟩1

θ1 = 0, s1

|+⟩3

|ϕ⟩2

θ2 = 0, s2

|+⟩4

The (∧Z12) (H1 ⊗ H2)-gate MBQC pattern
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Example: details

1 Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

|s1⟩1 ⊗ X s1
3 H3 |ψ⟩3

2 Consider qubit 2 and qubit 4 (the effect of measuring qubit 1).

|s2⟩2 ⊗ X s2
4 H4 |ϕ⟩4

3 We apply a ∧Z on the qubits 3 and 4.

|s1⟩1 ⊗ |s2⟩ ⊗ ∧Z34 (X
s1
3 H3 |ψ⟩3 ⊗ X s2

4 H4 |ϕ⟩4)

- The corrections (X ’s that depend on measurement outcomes)
will be formally treated later (L16)

- The net effect (baring corrections – setting si = 0) is:

(∧Z ) (H ⊗ H) (|ψ⟩ ⊗ |ϕ⟩)

.

Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Example: details

1 Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

|s1⟩1 ⊗ X s1
3 H3 |ψ⟩3

2 Consider qubit 2 and qubit 4 (the effect of measuring qubit 1).

|s2⟩2 ⊗ X s2
4 H4 |ϕ⟩4

3 We apply a ∧Z on the qubits 3 and 4.

|s1⟩1 ⊗ |s2⟩ ⊗ ∧Z34 (X
s1
3 H3 |ψ⟩3 ⊗ X s2

4 H4 |ϕ⟩4)

- The corrections (X ’s that depend on measurement outcomes)
will be formally treated later (L16)

- The net effect (baring corrections – setting si = 0) is:

(∧Z ) (H ⊗ H) (|ψ⟩ ⊗ |ϕ⟩)

.
Petros Wallden Lecture 23: Measurement-Based Quantum Computing (MBQC) I



Summary: MBQC Universality

We have measurement pattern for the J(−θ) gate:

Input qubit entangled with another one and measured in the
Mθ basis

General single qubit gates can be obtained by combining the
previous gates and noting that all single qubit unitaries can be
decomposed as J(0)J(θ1)J(θ2)J(θ3)

For two-qubit gate, we use ∧Z that is already in the graph
state, but:

Need to apply it “vertically” to avoid obstructing the “flow”
of the computation

Next Lecture: formally how to treat “corrections” and resort
deterministic application of gates!
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Further Reading

1 One-way Quantum Computation - a tutorial introduction, D.
Browne and H. Briegel, arxiv:quant-ph/0603226

2 An introduction to measurement based quantum
computation, R. Jozsa, arxiv:quant-ph/0508124

3 Quantum computing with photons: introduction to the circuit
model, the one-way quantum computer, and the fundamental
principles of photonic experiments, S. Barz, Journal of Physics
B: Atomic, Molecular and Optical Physics, Vol 48, Num. 8
(2015).

4 Chapter 7, Semantic Techniques in Quantum Computation –
Editors Simon Gay and Ian Mackie
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