Introduction to Quantum Computing Lecture 24: MBQC II

Petros Wallden

School of Informatics, University of Edinburgh

7th November 2024

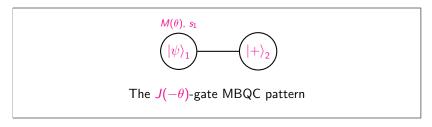
This Lecture

- General Measurement Patterns and Background
- 4 How to cancel the "corrections" due to randomness
- Output corrections, an Example and MBQC recap

Part I

General Measurement Patterns and Background

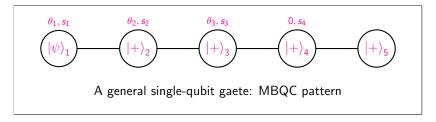
Previously in MBQC



The above measurement pattern results to:

$$X^{s_1}J(-\theta)\ket{\psi}_2 = X^{s_1}HR(-\theta)\ket{\psi}_2$$

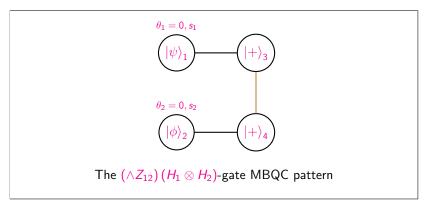
Previously in MBQC



The above measurement pattern results to:

$$X^{s_4}J(0)X^{s_3}J(-\theta_3)X^{s_2}J(-\theta_2)X^{s_1}J(-\theta_1)\ket{\psi}$$

Previously in MBQC



The above measurement pattern results to:

$$\wedge Z_{34} \left(X_3^{\mathfrak{s}_1} H_3 \left| \psi \right\rangle_3 \otimes X_4^{\mathfrak{s}_2} H_4 \left| \phi \right\rangle_4 \right)$$

Measurement Pattern for Generic Computation

- Corrections appear when $s_i \neq 0$
- Let ϕ_i be the measurement angles that implement the desired unitary if **all** measurements give the result zero $s_i = 0 \ \forall \ i$
- The set $\{\phi_i\}_i$ determine the computation performed, and we call them **default measurement angles**.

Measurement Pattern for Generic Computation

- Corrections appear when $s_i \neq 0$
- Let ϕ_i be the measurement angles that implement the desired unitary if **all** measurements give the result zero $s_i = 0 \ \forall \ i$
- The set $\{\phi_i\}_i$ determine the computation performed, and we call them **default measurement angles**.
- We define $\phi'_i(\phi_i, s_j | j \in \{\text{past of } i\})$ to be the **corrected** measurement angles (see later for expression)

Measurement Pattern for Generic Computation

- Corrections appear when $s_i \neq 0$
- Let ϕ_i be the measurement angles that implement the desired unitary if **all** measurements give the result zero $s_i = 0 \ \forall \ i$
- The set $\{\phi_i\}_i$ determine the computation performed, and we call them **default measurement angles**.
- We define $\phi'_i(\phi_i, s_j | j \in \{\text{past of } i\})$ to be the **corrected** measurement angles (see later for expression)
- Default angles determine computation: $\{\phi_1,\phi_2,\cdots\}$
- Corrected angles are the one used for measurements:

$$\{\phi_1',\phi_2',\cdots\}$$

Does a consistent order (for measurements and corrections) exist?

Does a consistent order (for measurements and corrections) exist? <u>Definition</u>: An entanglement graph (G, I, O), with I, O input responding vertices, has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

- **1** $x \sim f(x)$: (x and f(x) are neighbours in the graph)
- $x \leq f(x)$: (f(x)) is to the future of x with respect to the partial order)
- for all $y \sim f(x)$, we have $x \leq y$: (any other neighbours of f(x) are all to the future of x)

Does a consistent order (for measurements and corrections) exist? <u>Definition</u>: An entanglement graph (G, I, O), with I, O input responding vertices, has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

- **1** $x \sim f(x)$: (x and f(x) are neighbours in the graph)
- $x \leq f(x)$: (f(x)) is to the future of x with respect to the partial order)
- for all $y \sim f(x)$, we have $x \leq y$: (any other neighbours of f(x) are all to the future of x)
 - Measurements should respect the partial order
 - Condition 3 guarantees **no loops**: by measuring x before f(x) we will never have some y that f(f(x)) = y and $y \le x$

Does a consistent order (for measurements and corrections) exist? <u>Definition</u>: An entanglement graph (G, I, O), with I, O input responding output vertices, has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

- ① $x \sim f(x)$: (x and f(x) are neighbours in the graph)
- $x \leq f(x)$: (f(x)) is to the future of x with respect to the partial order)
- for all $y \sim f(x)$, we have $x \leq y$: (any other neighbours of f(x) are all to the future of x)
 - Measurements should respect the partial order
 - Condition 3 guarantees **no loops**: by measuring x before f(x) we will never have some y that f(f(x)) = y and $y \le x$
 - **Example**: 2-dim lattice. $f(x) \Rightarrow$ same row, next column

Graph States as Stabiliser States

Graph state $|G\rangle$ is defined as:

$$|G\rangle = \prod_{(a,b)\in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V}$$

An operator A stabilises a state if $(\lambda = +1 \text{ eigenspace})$

$$A|\psi\rangle = |\psi\rangle$$

The state $|G\rangle$ is a **stabiliser state** with generators:

$$K_i := X_i \left(\prod_{j \in N_G(i)} Z_j \right)$$

For each vertex $i \in V$ there is a stabiliser that has X at that vertex and Z to all its neighbours $N_G(i)$ in the graph.

Graph States as Stabiliser States

Operators K_i stabilise $|G\rangle$:

$$K_{i} |G\rangle = X_{i} \left(\prod_{j \in N_{G}(i)} Z_{j} \right) \prod_{(a,b) \in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V}$$

$$= X_{i} \prod_{(a,b) \in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V \setminus N_{G}(i)} |-\rangle^{\otimes j \in N_{G}(i)}$$

where we used that Z commutes with $\wedge Z$ and that $Z \mid + \rangle = \mid - \rangle$.

Graph States as Stabiliser States

We know that $X_i \wedge Z^{(i,j)} = \wedge Z^{(i,j)} X_i Z_j$ and we get:

$$K_i |G\rangle = \prod_{(a,b)\in E} \wedge Z^{(a,b)} \left(X_i \prod_{j\in N_G(i)} Z_j \right) |+\rangle^{\otimes V \setminus N_G(i)} |-\rangle^{\otimes j\in N_G(i)}$$

since X_i acts as above if i belongs to that edge while it commutes with all the other $\wedge Z$ that do not involve qubit i. However this changes back the states since $Z \mid - \rangle = \mid + \rangle$, and $X \mid + \rangle = \mid + \rangle$ results to

$$K_i |G\rangle = \prod_{(a,b)\in E} \wedge Z^{(a,b)} |+\rangle^{\otimes V}, \ \forall \ i \in V = |G\rangle$$

• It can be shown that this set of generators uniquely determines the graph state $|G\rangle$.

Part II

How to cancel the "corrections" due to randomness

How to apply an operator by acting on different qubits

Given a graph state $|G\rangle$, we can apply X, Z operators at qubit i by acting on qubits other than i.

We will use: $K_i |G\rangle = |G\rangle$

① To apply X_i :

$$X_i |G\rangle = X_i K_i |G\rangle = \prod_{j \in N_G(i)} Z_j |G\rangle$$

where $N_G(i)$ are the neighbours of i in the graph

② To apply Z_i :

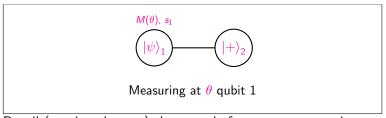
$$Z_i |G\rangle = Z_i K_{f(i)} |G\rangle = X_{f(i)} \prod_{j \in N_G(f(i)) \setminus i} Z_j |G\rangle$$

where f(i) is the flow of i and $N_G(f(i)) \setminus i$ are all the neighbours of f(i) in the graph apart from i

How to apply an operator by acting on different qubits

Can cancel a correction **after** measuring that qubit, provided **all** qubits *j* involved are still not measured!

- This cannot be done for the X operator (qubits both to the past and future according to the definition of flow).
 Need to adapt the angles
- This can be done for the Z operator because of properties of the flow! (conditions 2 and 3)



Recall (previous lecture) the state before measurement is:

$$|\chi\rangle_{12} = \wedge Z_{12} (|\psi\rangle_{1} \otimes |+\rangle_{2}) = a |0+\rangle_{12} + b |1-\rangle_{12}$$

= $|+_{\theta}\rangle_{1} X^{s_{1}=0} J(-\theta)_{2} |\psi\rangle_{2} + |-_{\theta}\rangle_{1} X_{2}^{s_{1}=1} J(-\theta)_{2} |\psi\rangle_{2}$

If we could have started with $Z_1^{s_1} |\psi\rangle_1$ state instead of $|\psi\rangle_1$:

$$|\chi\rangle_{12} = |+_{\theta}\rangle_{1} X^{s_{1}} J(-\theta)_{2} Z_{2}^{s_{1}} |\psi\rangle_{2} + |-_{\theta}\rangle_{1} X_{2}^{s_{1}} J(-\theta)_{2} Z_{2}^{s_{1}} |\psi\rangle_{2}$$
$$= |+_{\theta}\rangle_{1} J(-\theta)_{2} |\psi\rangle_{2} + |-_{\theta}\rangle_{1} J(-\theta)_{2} |\psi\rangle_{2}$$

using that $J(-\theta)Z^{s_1} = X^{s_1}J(-\theta)$ and $X^{s_1}X^{s_1} = I$. Now, there is **no random correction** and any outcome of the measurement leads to the desired gate.

- Getting the "wrong" outcome $s_i = 1$ is as if a Z-correction on the initial state was applied, and could cancel it by applying another Z on that qubit.
- However, to do this we need to know s₁ which is the outcome of measuring qubit 1, and this (clearly) happens after the preparation of qubit 1.

 Using stabilisers, we proved that we can apply Z by acting on other qubits that are not yet measured!

- Using stabilisers, we proved that we can apply Z by acting on other qubits that are not yet measured!
- If the "correction" is on output qubit: see next part
- If the "correction is on non-output qubits, instead of acting on them, we can modify the measurement angles:

$$M_i^{\phi_i} X = M_i^{-\phi_i} \; ; \; M_i^{\phi_i} Z = M_i^{\phi_i + \pi}$$

- Using stabilisers, we proved that we can apply Z by acting on other qubits that are not yet measured!
- If the "correction" is on output qubit: see next part
- If the "correction is on non-output qubits, instead of acting on them, we can modify the measurement angles:

$$M_i^{\phi_i} X = M_i^{-\phi_i} \; ; \; M_i^{\phi_i} Z = M_i^{\phi_i + \pi}$$

This holds since:

$$X \mid +_{\phi} \rangle = e^{i\phi} \mid +_{(-\phi)} \rangle$$
 and $Z \mid +_{\phi} \rangle = \mid -_{\phi} \rangle = \mid +_{(\phi+\pi)} \rangle$

E.g.
$$|+_{\phi}\rangle\langle+_{\phi}|Xe^{i\phi}=|+_{\phi}\rangle\langle+_{-\phi}|$$
 and $|+_{\phi}\rangle\langle+_{\phi}|Z=|+_{\phi}\rangle\langle+_{\phi+\pi}|$

- We have seen what corrections are caused by one qubit
- We want to see all the corrections (caused by any qubit) on (for example) qubit *i* that we want to measure:

- We have seen what corrections are caused by one qubit
- We want to see all the corrections (caused by any qubit) on (for example) qubit i that we want to measure:
 - **1** An X-correction from $f^{-1}(i)$ the qubit that its flow is i.

The set of vertices that induce X corrections to qubit i is denoted as $S_x(i) = \{f^{-1}(i)\}.$

- We have seen what corrections are caused by one qubit
- We want to see all the corrections (caused by any qubit) on (for example) qubit i that we want to measure:
 - An X-correction from $f^{-1}(i)$ the qubit that its flow is i. The set of vertices that induce X corrections to qubit i is denoted as $S_X(i) = \{f^{-1}(i)\}$.
 - ② A Z-correction from all qubits $j \neq i$ that their flow f(j) is neighbour to i.

I.e. take each k of the neighbours of i and find $j := f^{-1}(k)$

The set of vertices that induce Z corrections to qubit i is denoted as $S_z(i) = \{j \neq i : i \in N_G(f(j))\}.$

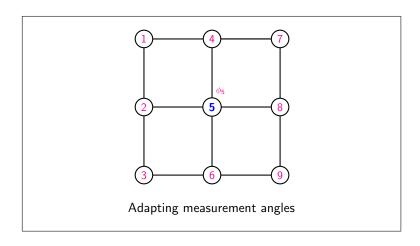
This sum leads to the corrected angle ϕ'_i :

$$\phi_i' = (-1)^{\sum_{j \in S_x(i)} s_j} \phi_i + \pi \left(\sum_{j \in S_z(i)} s_j \right)$$

$$\phi'_{i} = (-1)^{s_{f}-1}{}_{(i)}\phi_{i} + \pi \left(\sum_{j:i\in N_{G}(f(j))|j\neq i} s_{j}\right)$$

Part III

An Example, Output Corrections and MBQC recap



- Each qubit has result si
- The order of measurements is the same as the labels
- The **flow** is defined as: f(i) = i + 3

- Each qubit has result si
- The order of measurements is the same as the labels
- The **flow** is defined as: f(i) = i + 3
- Consider qubit 5:
 - $f^{-1}(5) = 2$
 - $N_G(5) = \{2, 4, 6, 8\}$

- Each qubit has result si
- The order of measurements is the same as the labels
- The **flow** is defined as: f(i) = i + 3
- Consider qubit 5:
 - $f^{-1}(5) = 2$
 - $N_G(5) = \{2, 4, 6, 8\}$
 - X-correction from s_2 , i.e. $S_x(5) = \{2\}$
 - Z-corrections from: $\{s_1, s_3\}$, i.e. $S_z(5) = \{1, 3\}$. Since we look for $f^{-1}(\cdot)$ for each of the neighbours of 5. Qubit 2 has no past, qubit 8 has our qubit to its past, which leaves only the past of qubit 4 and qubit 6.

- Each qubit has result si
- The order of measurements is the same as the labels
- The **flow** is defined as: f(i) = i + 3
- Consider qubit 5:
 - $f^{-1}(5) = 2$
 - $N_G(5) = \{2, 4, 6, 8\}$
 - X-correction from s_2 , i.e. $S_x(5) = \{2\}$
 - Z-corrections from: $\{s_1, s_3\}$, i.e. $S_z(5) = \{1, 3\}$. Since we look for $f^{-1}(\cdot)$ for each of the neighbours of 5. Qubit 2 has no past, qubit 8 has our qubit to its past, which leaves only the past of qubit 4 and qubit 6.

We then obtain the corrected measurement angle:

$$\phi_5' = (-1)^{s_2}\phi_5 + \pi(s_1 + s_3)$$

Note: Depends on outcomes measured **before** qubit 5.

- Note: Some algorithms have no output qubits (end with measurement)
- For the rest algorithms, output qubits are treated differently
- Output qubits cannot be corrected with adapting the measurement angle
- There is an operation that needs to be applied. Conditional on previous outcomes, one applies a X operation, a Z operation, both or none.

- Note: Some algorithms have no output qubits (end with measurement)
- For the rest algorithms, output qubits are treated differently
- Output qubits cannot be corrected with adapting the measurement angle
- There is an operation that needs to be applied. Conditional on previous outcomes, one applies a X operation, a Z operation, both or none.
- **Correction** for qubit $i: X_i^{s_{X,i}} Z_i^{s_{Z,i}}$
 - $s_{X,i}$ is affected by qubits in $S_x(i)$ that is defined as for the measured qubits
 - $s_{Z,i}$ is affected by qubits in $S_z(i)$ that is defined as for the measured qubits

- The coefficient of the X correction of output qubit i, depends only on $f^{-1}(i)$
- The coefficient of the Z correction of output qubit i, depends on the past of all its neighbours (as with corrections)

- The coefficient of the X correction of output qubit i, depends only on $f^{-1}(i)$
- The coefficient of the Z correction of output qubit i, depends on the past of all its neighbours (as with corrections)

$$s_X = \sum_{j \in S_x(i)} s_j = s_{f^{-1}(i)}$$

$$s_Z = \sum_{j \in S_z(i)} s_j = \sum_{j \neq i | i \in N_G(f(j))} s_j$$

- The coefficient of the X correction of output qubit i, depends only on $f^{-1}(i)$
- The coefficient of the Z correction of output qubit i, depends on the past of all its neighbours (as with corrections)

$$s_X = \sum_{j \in S_x(i)} s_j = s_{f^{-1}(i)}$$

$$s_Z = \sum_{j \in S_z(i)} s_j = \sum_{j \neq i | i \in N_G(f(j))} s_j$$

NOTE. Measured Vs Output qubits
 Same sets of S_x(i) and S_z(i) qubits that influence them
 Measured qubits modify their measurement angle to φ'_i
 Output qubits need to apply the extra gates Z^{sz} and X^{sx}

- Start with a universal graph state
- The computation is performed by **measuring** one-by-one the qubits using **single-qubit** bases: $\{|+_{\theta}\rangle, |-_{\theta}\rangle\}$ (or $\{|0\rangle, |1\rangle\}$).
- Exact measurement basis depends on previous outcomes.

- Start with a universal graph state
- The computation is performed by **measuring** one-by-one the qubits using **single-qubit** bases: $\{|+_{\theta}\rangle, |-_{\theta}\rangle\}$ (or $\{|0\rangle, |1\rangle\}$).
- Exact measurement basis depends on previous outcomes.
- The **order of measurements** is determined by the **flow** f(i) along with partial order \leq .

- Start with a universal graph state
- The computation is performed by **measuring** one-by-one the qubits using **single-qubit** bases: $\{|+_{\theta}\rangle, |-_{\theta}\rangle\}$ (or $\{|0\rangle, |1\rangle\}$).
- Exact measurement basis depends on previous outcomes.
- The **order of measurements** is determined by the **flow** f(i) along with partial order \leq .
- Single qubit gates performed using $J(\theta)$ -gate and along with $\wedge Z$ is **universal**. Random corrections need to be cancelled.

- Start with a universal graph state
- The computation is performed by **measuring** one-by-one the qubits using **single-qubit** bases: $\{|+_{\theta}\rangle, |-_{\theta}\rangle\}$ (or $\{|0\rangle, |1\rangle\}$).
- Exact measurement basis depends on previous outcomes.
- The **order of measurements** is determined by the **flow** f(i) along with partial order \leq .
- Single qubit gates performed using $J(\theta)$ -gate and along with $\wedge Z$ is **universal**. Random corrections need to be cancelled.
- A unitary U is implemented by a set of **default** angles ϕ_i if all measurement had outcomes $s_i = 0$.
- The actual "corrected" basis that a qubit i is measured is modified, using flow & stabiliser properties:

$$\phi'_i = (-1)^{s_{f-1(i)}} \phi_i + \pi \left(\sum_{j: i \in N_G(f(j))} s_j \right)$$

Further Reading on MBQC

- One-way Quantum Computation a tutorial introduction, D. Browne and H. Briegel, arxiv:quant-ph/0603226
- An introduction to measurement based quantum computation, R. Jozsa, arxiv:quant-ph/0508124
- Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments, S. Barz, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol 48, Num. 8 (2015).
- Chapter 7, Semantic Techniques in Quantum Computation Editors Simon Gay and Ian Mackie