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Exercise 1: Circuits

import pennylane as pl
from pennylane import numpy as np

import matplotlib .pyplot as plt

def circuit():

# Call pl.Hadamard and pl.CNOT to build and return this circuit

pl.

return pl.

print (pl.draw(circuit) ())




Exercise 1: Parameterised circuits
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def circuit (alpha,beta,gamma) :
# Call pl.RX, pl.RY, pl.RZ, and pl.CNOT to build and return this c
pl.

return pl.

pl.drawer.use style("black white")

pl.draw mpl (circuit) (np.pi/4, np.pi/8, 0)




Exercise 3: Executing circuits
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device = pl.device('default.qubit', wires=['aux', 'gl', shots=[1,10,100,1000])
def circuit (alpha, beta):
# Build and return this circuit, using pl.e 31 and pl.PauliZ to measure qubit 2
pl.

return pl.

gnode = pl.QONode (circuit,device)

gnode (np.pi/4, np.pi/4)




Exercise 4: Circuit depth

device = pl.device('default.qubit', wires=3)

@pl.gnode (device)

def circuit(x, vy):
# Build any circuit and inspect its depth
return pl.

pl.draw mpl (circuit) (0, 0)

print (pl.specs(circuit) (0,0) ['resources'])

@pl.compile
@pl.gnode (device)
def circuit(x, vy):

# Build any circuit and inspect its depth, now using @pl

return pl.
pl.draw mpl (circuit) (0, 0)

print (pl.specs(circuit) (0,0) ['resources'])

.compile decorator




Quantum teleportation

Suppose there are two researchers named Alice and Bob, and Alice wants to send her quantum state to Bob. The
quantum teleportation protocol enables Alice to do exactly this in a very elegant manner, and it can be described

in four steps:

1. State preparation: Alice initializes her qubit to the state she wishes to teleport.

2. Shared entanglement: A Bell state is created and distributed to Alice and Bob (one qubit each).
3. Change of basis: Alice converts her two qubits from the Bell basis to the computational basis.

4. Measurement: Alice measures her two qubits, then tells Bob how to convert his qubit to obtain the desired
state. Note that it is only quantum information being teleported, and not a physical particle.

An overview of the protocol can be seen here:
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No-cloning theorem

You might be wondering why we need to teleport a state at all. Can't Alice just make a copy of it and send the
copy to Bob? It turns out that copying arbitrary states is prohibited, which you can understand using something
called the no-cloning theorem. The proof is surprisingly straightforward. Suppose we would like to design a
circuit (unitary transformation) U that can perform the following action:

U(lv) ®|s)) = [¥) ® ),
U(lp) ® [s}) = |9) ® |0},

where |1) and |p) are arbitrary, normalized single-qubit states, and |s) is some arbitrary, normalized starting
state. We will now prove that no such U exists!

First, let's take the inner product of the left-hand sides of the two equations:

(¥l ® (sNUU(l9) ® |s)) = (¥lp) (sls)

Since (s|s) equals 1, this evaluates to (/). Next, we compare the inner product of the right-hand sides of the
two equations: ((wlsp))z. These inner products must be equal, and they are only equal if they are a value that
squares to itself. The only valid values for the inner product then are 1 and 0. But if the inner product is 1, the
states are the same; on the other hand, if the inner product is 0, the states are orthogonal. Therefore, we can't
clone arbitrary states!



Quantum teleportation: state preparation
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Teleportation involves three qubits. Two of them are held by Alice, and the third by Bob. We'll denote their states
using subscripts:

1. |-} s, Alice's first qubit that she will prepare in some arbitrary state
2. |-} 4, Alice's auxiliary (or “ancilla”) qubit that she will entangle with Bob’s qubit for communication purposes
3 {-}B, Bob's qubit that will receive the teleported state

Together, their starting state is:

|0)5]0) 4|0) 5.

The first thing Alice does is prepare her first qubit in whichever state |1/) that she'd like to send to Bob so that
their combined state becomes:

[¥)5]0) 4]0) 5.



Quantum teleportation: shared entanglement
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The reason why teleportation works is the use of an entangled state as a shared resource between Alice and

Bob. You can imagine some process that generates a pair of entangled qubits, and sends one qubit to each
party. For simplicity (and simulation!), we will represent the entanglement process as part of our circuit.

Entangling the qubits A and B leads to the combined state:

L (19)510)410)5 + [9)s11).11)5) 8
V2

The AB subsystem is now in what is known as a Bell state. There are four maximally entangled two-qubit Bell
states, and they form the Bell basis:

1

) = 2= (100) + 1),
Y= L —_
v) = (00 - 1),
R %uon-um),
1

6-) = E(\OU - 10)).

In our experiment, because A B started in the |00) state, we create the |1/

(M-

} Bell state as is shown in equation



Quantum teleportation: change of basis
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This is where things get tricky, but also very interesting. The third step of the protocol is to apply a CNOT and a
Hadamard to the first two qubits. This is done prior to the measurements, and labelled “change of basis”. But
what basis is this? Notice how these two gates are the opposite of what we do to create a Bell state. If we run
them in the opposite direction, we transform the basis back to the computational one, and simulate a
measurement in the Bell basis.

After the basis transform, if we observe the first two qubits to be in the state |00}, this would correspond to the
outcome |1 ) in the Bell basis, |11} would correspond to |¢_), etc. Let's perform this change of basis, one step
at atime.



Quantum teleportation: change of basis

Suppose we write our initial state |1) as a|0) + 3|1), with @ and 3 being complex coefficients. Expanding out
the terms from (1), we obtain:

%(a[ooo) + B|100) + a|011) + B[111))

Now let's apply a CNOT between Alice’s two qubits:

L (/000 + B|110) + a|011) + B/101))
V2

And then a Hadamard on her first qubit:

%(a|000> + 100} + 8|010) — B|110) + a|011) + a|111) + B|001) — B/101)).

Now we need to do some rearranging. We group the terms based on the first two qubits:

2100)(@[0) + A1) + Z101)(810) + al1)) + 3/10)(al0) — A1) + F[11)(~B0) +al1). (2



Quantum teleportation: measurement and correction
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The last step of the protocol involves Alice performing a measurement on her qubits, and telling Bob to perform
some operations depending on what she measured. But why exactly do we need to do this? In the previous step,

|
=

we already performed a basis rotation back to the computational basis, so shouldn't we be good to go? Not quite,
but almost!

Let's take another look at equation (2). If Alice measures her two qubits in the computational basis, she is equally
likely to obtain any of the four possible outcomes. If she observes the first two qubits in the state |00}, she
would immediately know that Bob's qubit was in the state ar|0) + 3|1), which is precisely the state we are trying
to teleport!

If instead she observed the qubits in state |01), she'd still know what state Bob has, but it's a little off from the
original state. In particular, we have:
Bl0} + 1) = X[3).

After obtaining these results, Alice could tell Bob to simply apply an X gate to his qubit to recover the original
state. Similarly, if she obtained |10}, she would tell him to apply a Z gate.
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Exercise 5: Teleportation




