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Classical vs. Quantum 
Computing

The dreaded “Blue Screen of Death”. Faults such as these are due 
to software errors rather than hardware in classical CPUs.

Shivakumar et al. 2002

• Transitor gates in classical CPUs are 
extremely robust.

• Failure rates 𝑝 <≈ 1 × 10−15 
[Shivakumar et al. 2002].

• Classical gates are over a trillion times 
more reliable than qubit gates!

https://doi.org/10.1109/DSN.2002.1028924


Quantum Error Correction

Quantum error correction describes a 
family of system-level techniques that 
allow quantum computers to be built 
fault-tolerantly using noisy qubits.



Classical error correction

• Raw binary encodings have zero redundancy. E.g.

bin(42) ➞101010

• Applying a single bit flip to our binary encoding 

completely changes its meaning.

dec(100010)=34

• How do we make our encoding more fault tolerant?



The Classical Repetition Code

In repetition code protocols redundancy is 
introduced by duplicating each bit. E.g. applying 
the 3-bit repetition code protocol to our binary 
encoding gives:

101010➞ (111)(000)(111)(000)(111)(000)

We can now detect and correct single-bit faults 
through a majority vote:

(101)(100)(011)(000)(111)(010) ➞ 

(111)(000)(111)(000)(111)(000)



The Classical Repetition Code

3-bit repetition code. Binary symbols mapped to 3-
bit codewords.

0,1 → {000, 111}

• Single-bit errors can be corrected via majority 
vote. E.g., 000 → 010 → 000

• Two-bit errors can be detected, but are 
incorrectly corrected via majority vote. E.g. 
000 → 011 → 111

• Three-bit errors are undetectable via majority 
vote: 000 → 111

Code distance: The code distance is the minimum 
Hamming-weight of an undetectable error. E.g., 
distance d=3 for the 3-bit repetition code.

An error correction code can correct 𝑡 errors, 
where:

𝑡 =
𝑑 − 1

2

[n,k,d] Notation

𝑛: codeword length

𝑘: encoded message length

𝑑: code distance

E.g. 3-bit repetition code has parameters:
[𝑛 = 3, 𝑘 = 1, 𝑑 = 3]



The Challenges of Quantum Error Correction

• More complicated error channels. In classical error 
correction we only need to worry about bit flips. In 
quantum error correction there are phase-flips too: 

Bit flips: 𝑋 0 = |1⟩    and 𝑋 1 = |0⟩

Phase flips:  Z + = |−⟩    and 𝑍 − = |+⟩

• The No-Cloning Theorem: This prevents us from 
arbitrarily duplicating data as we do for classical 
repetition codes

• Wavefunction collapse: How do we check for errors 
in a quantum state without collapsing the encoded 
quantum information.

Evolution on the 

Bloch Sphere 

due to  bit-flip (X-

Pauli error)

Evolution on the 

Bloch Sphere 

due to  phase-

flip (Z-Pauli error)



The No-Cloning Theorem

Q: Can we create a quantum repetition 
code by duplicating states?

𝜓 → 𝜓 ⊗ 𝜓 ⊗ 𝜓 .

A: No! This is prohibited by the No-Cloning 
Theorem.

No-Cloning Theorem Derivation

For cloning, we require a unitary 𝑈 that 
duplicates quantum information as 
follows: 

𝑈( 𝜓 ⊗ 0 ) = 𝜓 ⊗ 𝜓 .

The cloning unitary should apply to any 
state:

𝑈( 𝜓 ⊗ 0 ) = 𝜓 ⊗ 𝜓
𝑈( 𝜙 ⊗ 0 ) = 𝜙 ⊗ 𝜙

Unitary operation preserve the inner 
product. Taking the inner product of the 
above gives:

𝜓 𝜙 = 𝜓 𝜙 2

• There are only two solutions to the 
above. Either:

𝜓 = 𝜙  or 𝜓 𝜙 = 0

• Therefore, 𝑈 only exists for states that 
are orthogonal.

• There is no unitary 𝑼 that can clone 
arbitrary states.

Dolly would not have existed had she been a 
Quantum Sheep. Image source: National 
Museum of Scotland



The two-bit repetition code: 
redundancy without cloning

The two-qubit repetition code

We can circumvent the No-Cloning theorem and 
redundantly encode quantum information using 
entanglement.

The two-qubit repetition code maps the 
computational basis 0 , 1 }, to the Logical basis 
states:

|0⟩𝐿 = 00     and    |1⟩𝐿 = 11

Example: Consider the following qubit state.

𝜓 = 𝛼 0 + 𝛽 1

The two-qubit repetition encoder creates the 
following state:

𝜓 𝐿 = 𝛼 00 + 𝛽 11

Initial state

Redundancy 
qubit

Logical state

Note. This is not cloning:

𝜓 𝐿 ≠ 𝜓 ⊗ |𝜓⟩



The two-bit repetition code: 
partitioning the Hilbert space

Partitioning the Hilbert Space

Prior to encoding, the initial state exists within a two-dimensional 
Hilbert space.

𝜓 = (𝛼 0 + 𝛽 1 ) ∈ ℋ2 = span 0 , 1 )

After encoding, the logical state exists within a four-dimensional 
Hilbert space:

𝜓 𝐿 = 𝛼 00 + 𝛽 11 ∈ ℋ4 = span 00 , 01 , 10 , |11⟩)

We can partition ℋ4 into two orthogonal subspaces

• The code-space: 𝒞 = span 00 , 11 )

• The error-space: ℰ = span 01 , 10 )

|00⟩ |11⟩

|10⟩ |01⟩

𝒞: 𝑐𝑜𝑑𝑠𝑝𝑎𝑐𝑒

ℰ: 𝑒𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒



Errors map 𝒞 → ℰ

If the logical state is un-errored, it in the codespace 

𝜓 𝐿 = 𝛼 00 + 𝛽 11 ∈ 𝒞 ⊂ ℋ4

If it is subject to a single-qubit Pauli-X error, the state 
is rotated into the error space. E.g., 

𝑋1 𝜓 𝐿 = 𝛼 10 + 𝛽 01 ∈ ℰ ⊂ ℋ4

We can detect the occurrence of a single-qubit X-
error by performing a measurement to determine 
which subspace the logical qubit is in.

|00⟩ |11⟩

|10⟩ |01⟩

𝒞: 𝑐𝑜𝑑𝑠𝑝𝑎𝑐𝑒

ℰ: 𝑒𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒



Detecting errors via stabiliser measurement

The two-qubit code partitions the Hilbert space into a codespace and an 
errorspace:

The code-space: 𝒞 = span 00 , 11 )

The error-space: ℰ = span 01 , 10 )

We can differentiate between the codespace and the error space using a 
Hadamard test (recall Lecture 16). The projector onto the codespace is:

Π𝒞 = |00⟩⟨00| + |11⟩⟨11|

The projector on the errorspace is:

Πℰ = |01⟩⟨01| + |10⟩⟨10|

The following unitary operator has eigenvalues ±1 depending upon 
whether it is applied to state in the codespace or the error space:

ΠS = Π𝒞 − Πℰ = Z1𝑍2

The above operator is referred to as a stabiliser as it acts as the identity 
on the logical state:

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

The Hadamard test operator 𝑍1𝑍1 has ±1 eigenvalues.

If the state is in the codespace, we measure the (+1) eigenvalue.

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

If the state is in the errorspace, we measure the (-1) eigenvalue.

𝑍1𝑍2(𝑋1 𝜓 𝐿) = 𝑍1𝑍2 𝛼 10 + 𝛽 01 = (−1)𝐸 𝜓 𝐿

This enables us to detect errors without destroying the superposition.



Error detection in the 2-qubit code

1. Initial circuit state: 𝜓 1 0 2 0 𝐴

2. After encoding: 𝜓 𝐿 0 𝐴

3. Two qubit state after the Hadamard test (immediately before measurement of 
qubit A):

1

2
𝐼 + 𝑍1𝑍2 E 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 E 𝜓 𝐿 1 𝐴

Examples

• If 𝐸 = 𝐼1𝐼2 (no error case) we measure the `0` syndrome.

1

2
𝐼 + 𝑍1𝑍2 𝐼1𝐼2 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 𝐼1𝐼2 𝜓 𝐿 1 𝐴

= 
1

2
𝐼 + 𝑍1𝑍2 𝐼1𝐼2 𝜓 𝐿 0 𝐴 = 𝜓 𝐿 0 𝐴

• If 𝐸 = 𝑋1𝐼2 we measure the `1` syndrome.

1

2
𝐼 + 𝑍1𝑍2 𝑋1𝐼2 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 𝑋1𝐼2 𝜓 𝐿 1 𝐴

= 
1

2
𝐼 − 𝑍1𝑍2 𝑋1𝐼2 𝜓 𝐿 1 𝐴 = 𝜓 𝐿 1 𝐴

1. Encoder. Maps state 𝜓  to the logical state 𝜓 𝐿.

2. Error channel: we assume that the two-qubit state is subject to some Pauli-X 
error in the region marked by the gate 𝐸

3. Stabiliser measurement and syndrome extraction. A Hadamard test can be 
performed to measure the operator 𝑍1𝑍2 and determine whether an error has 
occurred. The binary outcome of the measurement on auxiliary qubit 𝐴 is called 
the syndrome.



Error detection in the 2-qubit code

Pauli-operator commutation: Any pair of Pauli operators 𝑃𝑖 , 𝑃𝑗  either commute or anti-
commute with one another 𝑃𝑖 , 𝑃𝑗 = 0 or {𝑃𝑖 , 𝑃𝑗} = 0.

1. After encoding: 𝜓 𝐿 0 𝐴

2. After the Hadamard test (immediately before measurement of qubit A):

1

2
𝐼 + 𝑍1𝑍2 E 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 E 𝜓 𝐿 1 𝐴

Assume that 𝐸 is a Pauli operator.

If error commutes with stabiliser, 𝐸, 𝑍1𝑍2 = 0, then we are in the codespace and we 
measure the `0` syndrome.

1

2
𝐼 + 𝑍1𝑍2 𝐸 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 𝐸 𝜓 𝐿 1 𝐴

= 
1

2
𝐸 𝐼 + 𝑍1𝑍2 𝜓 𝐿 0 𝐴 +

1

2
𝐸 𝐼 − 𝑍1𝑍2 𝜓 𝐿 1 𝐴 = 𝐸 𝜓 𝐿 0 𝐴

If error anti-commutes with the stabiliser, {𝐸, 𝑍1𝑍2} = 0, then we are in the the 
errorspace and we measure the `1` syndrome.

1

2
𝐼 + 𝑍1𝑍2 𝐸 𝜓 𝐿 0 𝐴 +

1

2
𝐼 − 𝑍1𝑍2 𝐸 𝜓 𝐿 1 𝐴

= 
1

2
𝐸 𝐼 + 𝑍1𝑍2 𝜓 𝐿 0 𝐴 +

1

2
𝐸 𝐼 − 𝑍1𝑍2 𝜓 𝐿 1 𝐴 = 𝐸 𝜓 𝐿 1 𝐴

Pauli Error, E Syndrome readout, A

𝐼1 ⊗ 𝐼2 0

𝑋1 ⊗ 𝐼2 1

𝐼1 ⊗ 𝑋2 1

𝑋1 ⊗ 𝑋2 0

The syndrome measurement 𝐴 depends upon whether the error 𝐸 
commutes or anti-comutes with the stabiliser 𝑍1𝑍2



Pauli commutation rules

All single qubit Pauli operators 
𝑋, 𝑌, 𝑍 anti-commute with one 
another.

𝑋1𝑍1 = −𝑍1𝑋1
𝑋1𝑌1 = −𝑌1𝑋1
𝑍1𝑌1 = −𝑌1𝑍1

Multi-qubit Pauli operators anti-
commute if they non-trivially 
intersect on an odd number of 
qubits.

An intersection is trivial if a Pauli 
operator of type 𝜆 ∈ (𝑋, 𝑌, 𝑍) 
intersects with another Pauli of 
type Lambda or the identity.

Example 1: 𝑋1𝑍2 and 𝑍1𝑍2

- Non-trivially intersect on qubit 1: Anti-commute.

Example 2: 𝑋1𝐼2 and 𝐼1𝑍2

-    Do not intersect: Commute.

Example 3: 𝑍1𝑋2 and 𝑋1𝑍2

- Non-trivially intersect on qubits 1 and 2. Even number of non-trivial 
intersections: Commute

Example 4: 𝑍1𝐼2𝑍3𝑌4 and 𝑋1𝑋2𝑋3𝑋4.

- Non-trivially intersect on qubits 1, 3 and 4. Odd number of intersections: 
Anti-commute.

Example 5: 𝑍1𝑋2𝐼3 and 𝑍1𝐼2𝑋3

- All intersections are trivial: commute.



The three-qubit repetition code

To detect and correct errors, we require a larger Hilbert space and multiple 
overlapping stabiliser measurements. E.g. the three-bit repetition code:

𝜓 𝐿 = 𝛼 000 + 𝛽 111

with logical basis states:

0 𝐿 = 000 ,  1 𝐿 = |111⟩

This code has two independent stabilisers: 𝑍1𝑍2 and 𝑍2𝑍3

𝑍1𝑍2 00 𝐿 = 00 𝐿 and    𝑍1𝑍2 11 𝐿 = 11 𝐿

𝑍2𝑍3 00 𝐿 = 00 𝐿 and    𝑍2𝑍3 11 𝐿 = 11 𝐿

Each single-qubit X-error maps to a unique syndrome. The three-qubit code is 
therefore a correction code (the two-qubit code is a detection code). Recovery 
operations can be applied by consulting a look-up table.

Pauli Error, E Syndrome readout, 
𝑨𝟏𝑨𝟐

Recovery operation

𝐼1 ⊗ 𝐼2 ⊗ 𝐼3 00 𝐼1 ⊗ 𝐼2 ⊗ 𝐼3

𝐼1 ⊗ 𝐼2 ⊗ 𝑋3 01 𝐼1 ⊗ 𝐼2 ⊗ 𝑋3

𝐼1 ⊗ 𝑋2 ⊗ 𝐼3 11 𝐼1 ⊗ 𝑋2 ⊗ 𝐼3

𝑋1 ⊗ 𝐼2 ⊗ 𝐼3 10 𝑋1 ⊗ 𝐼2 ⊗ 𝐼3

𝐼1 ⊗ 𝑋2 ⊗ 𝑋3 10 𝐼1 ⊗ 𝑋2 ⊗ 𝑋3

𝑋1 ⊗ 𝑋2 ⊗ 𝐼3 01 𝑋1 ⊗ 𝑋2 ⊗ 𝐼3

𝑋1 ⊗ 𝐼2 ⊗ 𝑋3 11 𝑋1 ⊗ 𝐼2 ⊗ 𝑋3



So far, we’ve only considered Pauli-X type errors. We now 
consider the other error types qubits can be subject to.

A general qubit state can be represented as point on a Bloch 
sphere

𝜓 = cos
𝜃

2
0 + 𝑒𝑖𝜙sin

𝜃

2
|1⟩

Coherent errors can be described a unitary that rotates the 
state from one point on the Bloch sphere to another:

 𝑈 𝛿𝜃, 𝛿𝜙 𝜓 = cos
𝜃+𝛿𝜃

2
0 + 𝑒𝑖(𝜙+𝛿𝜙)𝑠𝑖𝑛

𝜃+𝛿𝜃

2
|1⟩

In classical error correction, we only need to worry about one 
type of error: bit-flips. For qubits, we have an infinite number 
of errors 𝑈 𝛿𝜃, 𝛿𝜙  corresponding to arbitrary rotations 
around the Bloch sphere.

This is problematic, as error correction is not generally 
possible for analogue encodings 

The digitisation of the error

Q: Is error correction still possible?

A: Yes!

The coherent error 𝑈 𝛿𝜃, 𝛿𝜙  is a unitary 2x2 matrix.

Any 2x2 matrix can be expanded in terms of a Pauli basis {𝐼, 𝑋, 𝑍, 𝑌}.

𝑈 𝛿𝜃, 𝛿𝜙 𝜓 = 𝛼𝐼 𝜓 + 𝛼𝑋𝑋 𝜓 + 𝛼𝑌𝑌 𝜓 + 𝛼𝑍𝑍|𝜓⟩

Recall that 𝑌 ∝ 𝑋𝑍. The above can therefore be written.

𝑈 𝛿𝜃, 𝛿𝜙 𝜓 = 𝛼𝐼 𝜓 + 𝛼𝑋𝑋 𝜓 + 𝛼𝑋𝑍𝑋𝑍 𝜓 + 𝛼𝑍𝑍|𝜓⟩

The ability to correction X-errors (bit-flips) and Z-flips (phase-flips) is 
sufficient to correct any coherent error.

This effect is known as the digitisation of the error.



Bit- and Phase-Flips

Evolution on the Bloch 

Sphere due to  bit-flip (X-

Pauli error)

Evolution on the Bloch 

Sphere due to  phase-flip 

(Z-Pauli error)



Logical operators and code distance

Three-qubit code:

0 𝐿 = 000 ,  1 𝐿 = |111⟩

Logical X-operator 𝑋𝐿 performs the mapping

𝑋𝐿 0 𝐿 = 1 𝐿    and     𝑋𝐿 1 𝐿 = |0⟩

For the three-qubit code:

𝑋𝐿 = 𝑋1𝑋2𝑋3

Logical operators always commute with all the stabilisers. E.g., 
for the three-qubit code with stablisers 𝑍1𝑍2 and 𝑍2𝑍3

𝑋1𝑋2𝑋3, 𝑍1𝑍2 = 0    and    𝑋1𝑋2𝑋3, 𝑍2𝑍3 = 0

 Logical operators always yield the `0` syndrome. I.e., they are 
undetectable.

The code distance is the equal to the minimum Hamming-
weight of a logical operator.

For the three-qubit code, the minimum-weight X-logical is 
𝑋1𝑋2𝑋3. The distance for X-errors is therefore 𝑑𝑋 = 3.

However, we also have to consider 𝒁-type logical operators.



Logical operators and code distance

Logical X-operator 𝑋𝐿 performs the mapping

𝑋𝐿 0 𝐿 = 1 𝐿    and     𝑋𝐿 1 𝐿 = |0⟩

Logical Z-operator 𝒁𝑳 performs the mapping

𝑍𝐿 + 𝐿 = − 𝐿     and    𝑍𝐿 − 𝐿 = + 𝐿

where + 𝐿 =
1

2
( 0 𝐿 + 1 𝐿)   and    − 𝐿 =

1

2
( 0 𝐿 − 1 𝐿) 

The 𝑍𝐿 and 𝑋𝐿 logical operators always anti-commute:

{𝑋𝐿 , 𝑍𝐿} = 0

For the three-qubit code

+ 𝐿 =
1

2
000 + 111 )   and    − 𝐿 =

1

2
000 − 111 )

A choice of logical operator for 𝑍𝐿is

𝑍𝐿 = 𝐼1𝐼2𝑍3

𝑍𝐿 + 𝐿 =
1

2
000 − 111 ) = − 𝐿

The 𝑍𝐿 operator commutes with both of the stabilisers 𝑍1𝑍2 and 
𝑍2𝑍3. It therefore maps to the `00` syndrome.

The distance of the three bit-repetition code is therefore 𝑑 = 1. It 
can detect 𝑋-errors, but not 𝑍-errors.



Detecting both X- and Z-Pauli errors

To detect both bit and phase-type errors, we require an encoding with 
stabilisers that anti-commute with both error types.

Example. The [4,2,2] code encodes two logical qubits in four physical 
qubits and has the following logical basis states

00 𝐿 =
1

2
0000 + 1111 )

01 𝐿 =
1

2
1100 + 0011 )

10 𝐿 =
1

2
1010 + 0101 )

11 𝐿 =
1

2
0110 + 1001 )

The above basis states are simultaneously stabilised by the following 
generators:

𝑋1𝑋2𝑋3𝑋4
𝑍1𝑍2𝑍3𝑍4

The syndrome table for the 
[4,2,2] detection code. Each 
single-qubit X/Y/Z error yields a 
non-zero syndrome. However, 
some syndromes are shared. -> 
This is a detection code not a 
correction code.



The Distance of the [4,2,2] Code

The [[4,2,2]] detection code has two logical qubits. There are therefore 
two independent logical X-type operators: 𝑋𝐿1 and 𝑋𝐿2:

𝑋𝐿1 = 𝑋1𝐼2𝑋3𝐼4

𝑋𝐿2 = 𝑋1𝑋2𝐼2𝐼4

We can obtain all of the basis states from the original 00 𝐿 state using 
the logical operators

00 𝐿 =
1

2
0000 + 1111 )

𝑋𝐿2 00 𝐿 = 01 𝐿 =
1

2
1100 + 0011 )

𝑋𝐿1 00 𝐿 = 10 𝐿 =
1

2
1010 + 0101 )

𝑋𝐿1𝑋𝐿2 00 𝐿 = 11 𝐿 =
1

2
0110 + 1001 )

To find the Z-logical operators, we need to find operators 𝑍𝐿1 and 𝑍𝐿2 
that:

1. Commute with all the stabilisers

2. Anti-commute with 𝑋𝐿1 and 𝑋𝐿2

Two logical operators that satisfy these conditions are:

𝑍𝐿1 = 𝑍1𝑍2𝐼3𝐼4
𝑍𝐿2 = 𝑍1𝐼2𝑍3𝐼4

Distance of the [4,2,2] code

• The logical operators are: 𝑋1𝐼2𝑋3𝐼4, 𝑋1𝑋2𝐼2𝐼4, 𝑍1𝑍2𝐼3𝐼4,  𝑍1𝐼2𝑍3𝐼4

• There are no-single qubit errors that yield the `00` syndrome when 
the stabilisers are measured.

• Therefore, the minimum-weight undetectable error has weight 2

• The distance of the code is 𝑑 = 2. It is a valid detection code for both 
Pauli-X and Pauli-Z type errors.



The [[n,k,d]] notation

Quantum codes are usually labelled using the 
𝑛, 𝑘, 𝑑  notation. This represents the 

following parameters.

• 𝑛: the number of physical qubits

• 𝑘: the number of logical qubits

• 𝑑: the code distance

Example 1: the detection code on the previous 
slide has parameters [[n=4,k=2,d=2]].

Example 2: the three-bit repetition code has 
parameters [[3,1,1]].

Detection codes vs. correction codes

Detection codes have 𝑑 = 2

Correction codes (next lecture) have 𝑑 ≥ 3.
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