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Recap: The Challenges of 
Quantum Error Correction

• More complicated error channels. In classical error 
correction we only need to worry about bit flips. In 
quantum error correction there are phase-flips too: 

Bit flips: 𝑋 0 = |1⟩    and 𝑋 1 = |0⟩

Phase flips:  Z + = |−⟩    and 𝑍 − = |+⟩

• The No-Cloning Theorem: This prevents us from 
arbitrarily duplicating data as we do for classical 
repetition codes

• Wavefunction collapse: How do we check for errors 
in a quantum state without collapsing the encoded 
quantum information.

Evolution on the 

Bloch Sphere 

due to  bit-flip (X-

Pauli error)

Evolution on the 

Bloch Sphere 

due to  phase-

flip (Z-Pauli error)



Recap: Subspace Encoding

If the logical state is un-errored, it in the codespace 

𝜓 𝐿 = 𝛼 00 + 𝛽 11 ∈ 𝒞 ⊂ ℋ4

If it is subject to a single-qubit Pauli-X error, the state 
is rotated into the error space. E.g., 

𝑋1 𝜓 𝐿 = 𝛼 10 + 𝛽 01 ∈ ℰ ⊂ ℋ4

We can detect the occurrence of a single-qubit X-
error by performing a measurement to determine 
which subspace the logical qubit is in.

|00⟩ |11⟩

|10⟩ |01⟩

𝒞: 𝑐𝑜𝑑𝑠𝑝𝑎𝑐𝑒

ℰ: 𝑒𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒



Recap: Detecting errors via stabiliser measurement

The two-qubit code partitions the Hilbert space into a codespace and an 
errorspace:

The code-space: 𝒞 = span 00 , 11 )

The error-space: ℰ = span 01 , 10 )

We can differentiate between the codespace and the error space using a 
Hadamard test (recall Lecture 16). The projector onto the codespace is:

Π𝒞 = |00⟩⟨00| + |11⟩⟨11|

The projector on the errorspace is:

Πℰ = |01⟩⟨01| + |10⟩⟨10|

The following unitary operator has eigenvalues ±1 depending upon 
whether it is applied to state in the codespace or the error space:

ΠS = Π𝒞 − Πℰ = Z1𝑍2

The above operator is referred to as a stabiliser as it acts as the identity 
on the logical state:

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

The Hadamard test operator 𝑍1𝑍1 has ±1 eigenvalues.

If the state is in the codespace, we measure the (+1) eigenvalue.

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

If the state is in the errorspace, we measure the (-1) eigenvalue.

𝑍1𝑍2(𝑋1 𝜓 𝐿) = 𝑍1𝑍2 𝛼 10 + 𝛽 01 = (−1)𝐸 𝜓 𝐿

This enables us to detect errors without destroying the superposition.



Recap: The [[4,2,2]] Detection Code

To detect both bit and phase-type errors, we require an encoding with 
stabilisers that anti-commute with both error types.

Example. The [4,2,2] code encodes two logical qubits in four physical 
qubits and has the following logical basis states

00 𝐿 =
1

2
0000 + 1111 )

01 𝐿 =
1

2
1100 + 0011 )

10 𝐿 =
1

2
1010 + 0101 )

11 𝐿 =
1

2
0110 + 1001 )

The above basis states are simultaneously stabilised by the following 
generators:

𝑋1𝑋2𝑋3𝑋4
𝑍1𝑍2𝑍3𝑍4

The syndrome table for the 
[4,2,2] detection code. Each 
single-qubit X/Y/Z error yields a 
non-zero syndrome. However, 
some syndromes are shared. -> 
This is a detection code not a 
correction code.



The Stabiliser 
Formalism for 
Quantum Error 
Correction



Stabiliser Codes

The stabilisers 𝒮 ⊂ 𝒫⊗𝑁 of a quantum 
error correction code simultaneously act 
as the identity on the logical state 𝜓 𝐿 
such that: 

𝐺𝑖 𝜓 𝐿 = (+1) 𝜓 𝐿    for all   𝐺𝑖 ∈ 𝒮  

To detect errors, a generating set 𝑆 ⊂ 𝒮 
is measured using the Hadamard test 
syndrome extraction gadgets (as 
described in Lecture 25).

Minimal generating set of stabilisers

A generating ⟨𝑆⟩ in minimal if all operators 
in 𝑆 are independent. E.g., [𝑍1𝑍2,  𝑍2𝑍3,
𝑍1𝑍3] is not a generating set, as 𝑍1𝑍3 =
(𝑍1𝑍2)(𝑍2𝑍3).

The Pauli Group: 𝒫⊗𝑛 is the Pauli-group 
(±𝐼, ±𝑖𝐼, ±𝑋, ±𝑌, ±𝑍, ±i𝑋, ±i𝑌, ±i𝑍) over 𝑛 qubits. E.g., 

𝑋1𝐼2𝑌3 ∈ 𝒫⊗3. 

Stabiliser code syndromes

Measurement of generator 𝑆𝑖  will yield outcome:

•   si = 0:    if the error commutes with the generator, 𝐸, 𝑆𝑖 = 0

•  si=  1:    if the error anti-commutes with the generator, E, 𝑆𝑖 = 0

The syndrome is the binary string obtained by concatenating all of the 
generator measurement outcomes: s = s1s2 … sm, where 𝑚 is the size 
of the generating set, 𝑚 = 𝑆 . 



The Stabiliser Group is Abelian

The stabiliser group is abelian: all elements of 𝒮 
mutually commute:

[𝐺𝑖 , 𝐺𝑗] = 0    for all   𝐺𝑖 , 𝐺𝑗 ∈ 𝒮 

Why?

Elements of 𝒮 simultaneously stabilise the logical 
state such that

𝐺𝑖𝐺𝑗 𝜓 𝐿 = +1 +1 𝜓 𝐿 for all 𝐺𝑖 , 𝐺𝑗 ∈ 𝒮 

If 𝐺𝑖𝐺𝑗 ∈ 𝒮 then we also have that 𝐺𝑗𝐺𝑖 ∈ 𝒮.

This can only be true if [𝐺𝑖 , 𝐺𝑗] = 0 for all 𝐺𝑖 , 𝐺𝑗 ∈ 𝒮.

Why (physicists edition)?

• The Heisenberg Uncertainty Principle stipulates that it is only 
possible to simultaneously measure commuting observables.

• Stabilisers are operators that are simultaneously measured on 
the logical state 𝜓 𝐿. Therefore, they must commute with one 
another.



Logical qubit count

The number of logical qubits 𝑘 encoded by a 
stabiliser code is given by:

𝑘 = 𝑛 − rank(𝒮)

Where:

𝑛: number of physical qubits 

𝑘: number of logical qubits

rank(𝒮): size of the minimal generating set |𝑆|. 

Example: The [[4,2,2]] code is defined by the 
following stabilisers:

𝒮 = ⟨𝑆⟩ = ർ ඀
𝑋1𝑋2𝑋3𝑋4

𝑍1𝑍2𝑍3𝑍4
 

𝑆 is a minimal generating set of size |𝑆|= 2. The 
code is defined over 𝑛 = 4 physical qubits. The 
number of logical qubits encoded is:

𝑘 = 𝑛 − rank 𝒮 = 𝑛 − 𝑆 = 4 − 2 = 2



Properties of logical operators

We have seen that logical operators correspond to Pauli-
operators 𝐿𝑖 that act non-trivially on the basis states. E.g.

𝑋𝐿 0 𝐿 = 1 𝐿 ,  𝑋𝐿 1 𝐿 = 0 𝐿

𝑍𝐿 0 𝐿 = 0 𝐿 , 𝑍𝐿 1 𝐿 = −1 1 𝐿

This means that any logical operator is not a stabiliser. We 
define a logical group ℒ ⊂ 𝒫⊗𝑛. The intersection with the 
stabiliser group is empty:

ℒ ∩ 𝒮 = ∅

We have also seen that logical operators always map to the 
zero syndrome (they are undetectable). This means that any 
logical operator 𝐿𝑖 must commute with all the stabilisers:

𝐿𝑖 , 𝐺𝑗 = 0  for all 𝐿𝑖 ∈ ℒ, 𝐺𝑖 ∈ 𝒮

Every stabiliser code has 2𝑘 logical operators. For each 
logical qubit 𝑖 there is:

• One X-type logical 𝑋𝐿𝑖

• One Z-type logical 𝑍𝐿𝑖

We expect logical operator pairs 𝑋𝐿𝑖
, 𝑍𝐿𝑖

 to commute 

with one another:

{𝑋𝐿𝑖
, 𝑍𝐿𝑖

} = 0



Properties of Logical Operators Continued

Why?

Any logical operator 𝐿𝑖 will commute with all the code 
stabilisers: [𝐿𝑖 , 𝐺𝑗]=0   for all   𝐺𝐽 ∈ 𝒮. 

𝐺𝑗𝐿𝑖 𝜓 𝐿 = 𝐿𝑖𝐺𝑗 𝜓 𝐿

All stabilisers map onto the +1 eigenspace of 𝜓 𝐿:

𝐿𝑖𝐺𝑗 𝜓 𝐿 = 𝐿𝑖 𝜓 𝐿

This means any product of 𝐺𝑖𝐿𝑗  has logical action 

identical to that of 𝐿𝑗.

Any logical operator multiplied 
by stabiliser is a logical 
operator: 

𝐺𝑗𝐿𝑖 ∈ ℒ for all 𝐿𝑖 ∈ ℒ, 𝐺𝑖 ∈ 𝒮. 



Example: Logical Operators of the [[4,2,2]] Code

Example: The [[4,2,2]] code is defined by the 
following stabilisers:

𝒮 = 𝑆 = ർ ඀
𝑋1𝑋2𝑋3𝑋4

𝑍1𝑍2𝑍3𝑍4
 

𝑆 is a minimal generating set of size |S|= 2. The 
code is defined over 𝑛 = 4 physical qubits. The 
number of logical qubits encoded is:

𝑘 = 𝑛 − 𝑆 = 4 − 2 = 2

A basis of the logical operators is:

 𝑋𝐿1= 𝑋1𝐼2𝑋3𝐼4,     𝑍𝐿1 = 𝑍1𝑍2𝐼3𝐼4

𝑋𝐿2 = 𝑋1𝑋2𝐼2𝐼4,  𝑍𝐿2 = 𝑍1𝐼2𝑍3𝐼4

Non of the above can be obtained from a product 
of elements in 𝒮.

We also see that {𝑋𝐿𝑖 , 𝑍𝐿𝑖}+= 0 for both logical 
operator pairs

{𝑋1𝐼2𝑋3𝐼4, 𝑍1𝑍2𝐼3𝐼4} = 0

{𝑋1𝑋2𝐼2𝐼4, 𝑍1𝐼2𝑍3𝐼4} = 0



Designing Quantum Error Correction Codes

Error Detection Codes

Error detection codes have distance 𝑑 = 2.

They can detect single-qubit  Pauli errors but 
can’t locate them.

Example: the [[4,2,2]] code is a detection 
code. See syndrome table below:

Error Correction Codes

For a stabiliser code to be correcting, we need to 
be able to detect and locate errors.

The number of errors a code can correct 𝑡 is give 
by:

𝑡 =
𝑑 − 1

2

By rearranging the above, we see that for a 
stabiliser code to be correcting it must have 𝑑 ≥ 3.



Example: The Steane Code

The Steane code is defined by the following stabiliser group 
generated by the stabilisers 𝑆:

Number of logical qubits:

• The code is defined over 7 physical qubits: 𝑛 = 7

• 𝑆 is minimal generating set of size 𝑆 = 6

• The number of logical qubits is:

𝑘 = 𝑛 − rank 𝒮 = 𝑛 − 𝑆 = 7 − 6 = 1

Syndrome table:

Each single-qubit error maps to a unique syndrome.

This means that the distance of this code is at least 
𝑑 = 3. It is a correction code. 



The Steane Code: Logical Operators

0 𝐿 =
1

8
[|0000000⟩ + |1010101 ⟩ + |0110011⟩ + |1100110⟩ + |0001111⟩ + |1011010⟩ + |0111100⟩ + |1101001⟩]

1 𝐿 =
1

8
[|1111111⟩  + |0101010⟩  + |1001100⟩  + |0011001⟩ + |1110000⟩ + |0100101⟩ + |1000011⟩ + |0010110⟩]

Logical operators

For the X-type logical operator 𝑋𝐿 we need a 
Pauli-operator that acts as follows:

𝑋𝐿 0 𝐿 = 1 𝐿,    𝑋𝐿 1 𝐿 = 0 𝐿

For the Z-type logical operator 𝑍𝐿, we need a 
Pauli-operator that acts as follows:

𝑍𝐿 0 𝐿 = 0 𝐿,    𝑍𝐿 1 𝐿 = − 1 𝐿

Steane Code: Logical basis

𝑋𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7

𝑍𝐿 = 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7

The above logical operators satisfy the anti-
commutation relation: {𝑋𝐿, 𝑍𝐿} = 0.



Steane Code: Distance

The Steane code is defined by the following stabiliser group:

A choice of logical operators are:

𝑋𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7

𝑍𝐿 = 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7

The code distance is the minimum Hamming-weight of a logical 
operator. Both of the logical operators above have weight 7. 
However, we have to consider all logical operators in the group ℒ.

Any logical operator multiplied by a stabiliser is a logical operator: 
𝐺𝑖𝐿𝑗 ∈ 𝒮 for all 𝐺𝑖 ∈ 𝒮 and 𝐿𝑗 ∈ ℒ.

If we multiply the 𝑋𝐿 logical operator by the first stabiliser, we get 
another logical operator:

𝑋𝐿
′ = (𝐼1𝐼2𝐼3𝑋4𝑋5𝑋6𝑋7) 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 = X1X2X3I4I5I6I7

Similarly, for the 𝑍𝐿 operator:

𝑍𝐿
′ = (𝐼1𝐼2𝐼3𝑍4𝑍5𝑍6𝑍7) 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7 = 𝑍1𝑍2𝑍3I4I5I6I7

Both of the above logical operators have Hamming weight 3. The 
distance of the code is therefore 𝑑 = 3.

The Steane code has node parameters: [[𝑛 = 7, 𝑘 = 1, 𝑑 = 3]]

Q: How do we know there isn’t a logical operator with hamming weight <3?
A: From the syndrome table, we saw that all single-qubit errors have a unique 
syndrome, implying that this is an error correction code. All error correction 
codes must have distance 𝑑 ≥ 3.  



The Shor Code: Code Construction by Concatenation

Code concatenation is a method of creating a larger code from two copies of a smaller code. The [[9,1,3]] code is a simple example that is obtained by 
concatenating a 3-bit repetition code for phase flips with a 3-qubit repition code for bit-flips.

3-qubit code for bit-flips 3-qubit code for phase-flips

Stabilisers:
𝑆3𝑏𝑖𝑡  = ⟨𝑍1𝑍2,  𝑍2 𝑍3⟩

Basis states: 
0 𝐿

3𝑏𝑖𝑡 = 000 , 1 𝐿
3𝑏𝑖𝑡 = |111⟩

Logical operators:

𝑋𝐿
3𝑏𝑖𝑡 = 𝑋1𝑋2𝑋3,  𝑍𝐿

3𝑏𝑖𝑡 = 𝑍1𝐼2𝐼3 

Stabilisers:
𝑆3𝑝ℎ𝑎𝑠𝑒 = ⟨𝑋1𝑋2,  𝑋2 𝑋3⟩

Basis states: 

0 𝐿
3𝑝ℎ𝑎𝑠𝑒

= | ++ +⟩, 1 𝐿
3𝑝ℎ𝑎𝑠𝑒

= | −− −⟩

Logical operators:

𝑋𝐿
3𝑝ℎ𝑎𝑠𝑒

= 𝑍1𝑍2𝑍3,  𝑍𝐿
3𝑝ℎ𝑎𝑠𝑒

= 𝑋1𝐼2𝐼3 



Shor Code: Encoding via Concatentation

Outer code encoding

0 𝐿
𝑜𝑢𝑡𝑒𝑟 = | ++ +⟩, 1 𝐿

𝑖𝑛𝑛𝑒𝑟 = | −− −⟩

Inner code encoding: The basis states of the Shor code are obtained by 
replacing each qubit in the above with a logical qubit from the bit-flip code.

0 𝐿 =
1

8
( 0 𝐿

𝑖𝑛𝑛𝑒𝑟 + 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ ( 0 𝐿

𝑖𝑛𝑛𝑒𝑟+ 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ ( 0 𝐿

𝑖𝑛𝑛𝑒𝑟+ 1 𝐿
𝑖𝑛𝑛𝑒𝑟)

1 𝐿 =
1

8
( 0 𝐿

𝑖𝑛𝑛𝑒𝑟 − 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ ( 0 𝐿

𝑖𝑛𝑛𝑒𝑟− 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ ( 0 𝐿

𝑖𝑛𝑛𝑒𝑟− 1 𝐿
𝑖𝑛𝑛𝑒𝑟)

This expands to:

0 𝐿 =
1

8
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)

1 𝐿 =
1

8
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)



Shor Code Stabilisers

From inner bit-flip code, we get three sets of two stabilisers:

𝑍1𝑍2,  𝑍2 𝑍3

𝑍4𝑍5,  𝑍5 𝑍6

𝑍7𝑍8,  𝑍8 𝑍9

We get an additional two stabiliser from the outer code.

The outer code stabilisers are: 𝑆1
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝑋𝐼, 𝑆2

𝑜𝑢𝑡𝑒𝑟 = 𝐼𝑋𝑋

We replace each Pauli from the outer code with a logical Pauli from the inner code:  

𝑋𝑋𝐼 → (𝑋𝐿1
𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿2

𝑖𝑛𝑛𝑒𝑟) ⊗ (𝐼𝐿
𝑖𝑛𝑛𝑒𝑟)

= (𝑋1𝑋2𝑋3) ⊗ (𝑋4𝑋5𝑋6) ⊗ (𝐼7𝐼8𝐼9) = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝐼7𝐼8𝐼9

I𝑋𝑋 → (𝐼𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿2

𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿3
𝑖𝑛𝑛𝑒𝑟)

= (𝐼1𝐼2𝐼3) ⊗ (𝑋4𝑋5𝑋6) ⊗ 𝑋7𝑋8𝑋9 = 𝐼1𝐼2𝐼3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9



Shor Code Stabilisers



Shor [[9,1,3]] Code Circuit

=

=

Compiling stabiliser checks with CNOT gates



Shor Code: Logical Operators and Distance

Outer code logical operators:

𝑋𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑍𝑍𝑍

𝑍𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝐼𝐼 

Inner code logical operators:

𝑋𝐿
𝑖𝑛𝑛𝑒𝑟 = 𝑋𝑋𝑋

𝑍𝐿
𝑖𝑛𝑛𝑒𝑟 = 𝑍𝐼𝐼

0 𝐿 =
1

8
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)

1 𝐿 =
1

8
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)

To get the Shor code logical operators, we replace each Pauli in the outer code 
with a logical Pauli from the inner code

𝑍𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝐼𝐼 →  𝑋𝐿

𝑖𝑛𝑛𝑒𝑟 ⊗ 𝐼𝐿
𝑖𝑛𝑛𝑒𝑟 ⊗ 𝐼𝐿

𝑖𝑛𝑛𝑒𝑟 = 𝑋1𝑋2𝑋3𝐼4𝐼5𝐼6𝐼7𝐼8𝐼9

𝑋𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑍𝑍𝑍 → (𝑍𝐿

𝑖𝑛𝑛𝑒𝑟) ⊗ 𝑍𝐿
𝑖𝑛𝑛𝑒𝑟 ⊗ (𝑍𝐿

𝑖𝑛𝑛𝑒𝑟) = 𝑍1𝐼2𝐼3𝑍4𝐼5𝐼6𝑍7𝐼8𝐼9

The Shor Code Logical operators are:

𝑋𝐿 = 𝑍1𝐼2𝐼3𝑍4𝐼5𝐼6𝑍7𝐼8𝐼9 ,  𝑍𝐿 = 𝑋1𝑋2𝑋3𝐼4𝐼5𝐼6𝐼7𝐼8𝐼9    

The Shor Code has distance 𝑑 = 3



Shor Code: [[n,k,d]] Parameters

Logical qubit count

𝑘 = 𝑛 − 𝑆

Physical qubits, 𝑛 = 9

𝑆 is a minimal generating 
set of size 𝑆 = 8

The logical qubit count is

𝑘 = 9 − 8 = 1

Code distance

d=3 (see previous slide)

Code parameters

[[n=9, k=1, d=3]]

Stabiliser generators



Shor Code: Syndrome Table & Degenerate Errors

Note that some of the Z-errors share a syndrome.

Q: Does this mean the Shor code is a detection code?

A: No. Consider the scenario in which the error E = 𝑍1 occurs. This error 
shares syndromes with 𝑍2 and 𝑍3. Therefore, our decoder must choose 
𝑍1, 𝑍2 or 𝑍3 at random:

• If recovery 𝑅 = 𝑍1, then 𝑅𝐸 = 𝐼 ∈ 𝒮

• If recovery 𝑅 = 𝑍2, then 𝑅𝐸 = 𝑍1𝑍2 ∈ 𝒮

• If recovery 𝑅 = 𝑍3, then 𝑅𝐸 = Z1Z3 ∈ 𝒮

In all three scenarios, the residual error 𝑅𝐸 ∈ 𝒮. Therefore, it doesn’t 
matter which correction we choose and the Shor code is still a correction 
code.

Errors of the same Hamming weight that share syndromes are called 
degenerate errors. 

Unique syndromes are a sufficient condition for a code to be correcting, 
but not necessary.

 

Shor Code stabiliser generators:



The Error Correction Cycle

The error correction cycle

1. Encoder: creates the logical state 𝜓 𝐿

2. Stabiliser measurements:  error detected by 
measuring stabiliser generators 𝑆𝑖 ∈ 𝑆 yielding a 
binary syndrome 𝑠.

3. A decoding algorithm (run a classical co-processor) 
interprets the syndrome and suggests a recovery 
operation ℛ.

4. The recovery operation is applied to the register.

Determining QEC success

At the end of the cycle, we are left with the state 
ℛ𝐸 𝜓 𝐿. We refer to ℛ𝐸 as the residual error.

• Successful QEC: If ℛ𝐸 ∈ 𝒮 then the QEC cycle has 
been successful as the residual is equal to a 
stabiliser:

ℛ𝐸 𝜓 𝐿 = (+1) 𝜓 𝐿.

• Unsuccessful QEC: If ℛ𝐸 ∈ ℒ then the encoded 
information is modified and the QEC procedure 
has failed.



Encoding circuits

The 0 𝐿codeword for any [[n,k,d]] stabiliser code can be obtained via a 
projection onto the +1 eigenspace of all of the stabilisers generators 𝑆𝑖 ∈ 𝑆:

0 𝐿 =
1

𝑁
ෑ

𝑆𝑖∈⟨𝑆⟩

(𝐼 + 𝑆𝑖) |0⊗𝑛⟩

where the 1/𝑁 term is a factor that ensures normalisation.

• This operator is non-unitary.

• However, it can be prepared by measuring all of the stabilisers on the blank 
|0⊗𝑛⟩ state. 



[[4,2,2]] Code Encoding Circuit

Immediately before the measurement of 𝐴1, the system is in the 
state:

1

2
1 + 𝑋1𝑋2𝑋3𝑋4 0000 0 𝐴1

+
1

2
1 − 𝑋1𝑋2𝑋3𝑋4 0000 1 𝐴1

• If 𝐴1is measured as `0’, then we have projected onto the +1 
eigenspace.

• If 𝐴2 is measured as `1’ then we are in the (−1) eigenspace. 
We can rotate into the correct subspace by applying any 
operator to the register that anti-commutes with 𝑋𝑋𝑋𝑋.

For the 𝑍1𝑍2𝑍3𝑍4 stabiliser, no correction is necessary as it 
stabilises both  |0000⟩ and |1111⟩.
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