

Quantum Error Correction: Stabiliser Codes

IQC 2024 Lecture 28

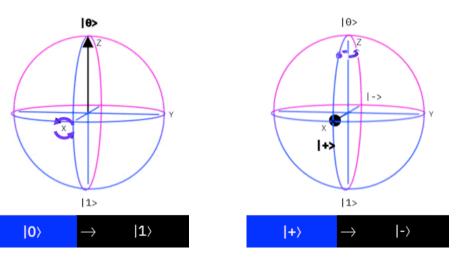
Instructor: Joschka Roffe, joschka.roffe@ed.ac.uk

Recap: The Challenges of Quantum Error Correction

• More complicated error channels. In classical error correction we only need to worry about bit flips. In quantum error correction there are phase-flips too:

Bit flips: $X|0\rangle = |1\rangle$ and $X|1\rangle = |0\rangle$ Phase flips: $Z|+\rangle = |-\rangle$ and $Z|-\rangle = |+\rangle$

- The No-Cloning Theorem: This prevents us from arbitrarily duplicating data as we do for classical repetition codes
- Wavefunction collapse: How do we check for errors in a quantum state without collapsing the encoded quantum information.



Evolution on the Bloch Sphere due to **bit-flip** (X-Pauli error) Evolution on the Bloch Sphere due to **phaseflip** (Z-Pauli error)

Recap: Subspace Encoding

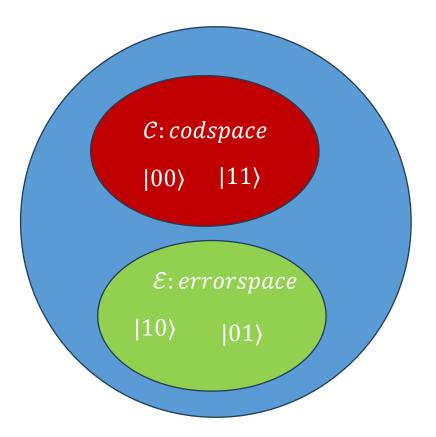
If the logical state is un-errored, it in the codespace

 $|\psi\rangle_L = (\alpha|00\rangle + \beta|11\rangle) \in \mathcal{C} \subset \mathcal{H}_4$

If it is subject to a single-qubit Pauli-X error, the state is rotated into the error space. E.g.,

 $X_1 |\psi\rangle_L = (\alpha |10\rangle + \beta |01\rangle) \in \mathcal{E} \subset \mathcal{H}_4$

We can detect the occurrence of a single-qubit Xerror by performing a measurement to determine which subspace the logical qubit is in.



Recap: Detecting errors via stabiliser measurement

The two-qubit code partitions the Hilbert space into a codespace and an errorspace:

The code-space: $C = \text{span}(|00\rangle, |11\rangle)$

The error-space: $\mathcal{E} = \text{span}(|01\rangle, |10\rangle)$

We can differentiate between the codespace and the error space using a **Hadamard test** (recall Lecture 16). The projector onto the codespace is:

 $\Pi_{\mathcal{C}} = |00\rangle\langle 00| + |11\rangle\langle 11|$

The projector on the errorspace is:

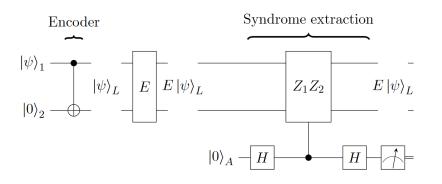
 $\Pi_{\mathcal{E}} = |01\rangle\langle 01| + |10\rangle\langle 10|$

The following unitary operator has eigenvalues ± 1 depending upon whether it is applied to state in the codespace or the error space:

$$\Pi_{\rm S} = \Pi_{\mathcal{C}} - \Pi_{\mathcal{E}} = \mathbf{Z}_1 \mathbf{Z}_2$$

The above operator is referred to as a **stabiliser** as it acts as the identity on the logical state:

$$Z_1 Z_2 |\psi\rangle_L = Z_1 Z_2(\alpha |00\rangle + \beta |11\rangle) = (+1)|\psi\rangle_L$$



The Hadamard test operator Z_1Z_1 has ± 1 eigenvalues. If the state is in the codespace, we measure the (+1) eigenvalue.

 $Z_1 Z_2 |\psi\rangle_L = Z_1 Z_2 (\alpha |00\rangle + \beta |11\rangle) = (+1) |\psi\rangle_L$

If the state is in the errorspace, we measure the (-1) eigenvalue.

$$Z_1 Z_2 (X_1 | \psi \rangle_L) = Z_1 Z_2 (\alpha | 10 \rangle + \beta | 01 \rangle) = (-1) E | \psi \rangle_L$$

This enables us to detect errors without destroying the superposition.

Recap: The [[4,2,2]] Detection Code

To detect both bit and phase-type errors, we require an encoding with stabilisers that anti-commute with both error types.

Example. The [4,2,2] code encodes two logical qubits in four physical qubits and has the following logical basis states

$$|00\rangle_L = \frac{1}{\sqrt{2}} (|0000\rangle + |1111\rangle)$$

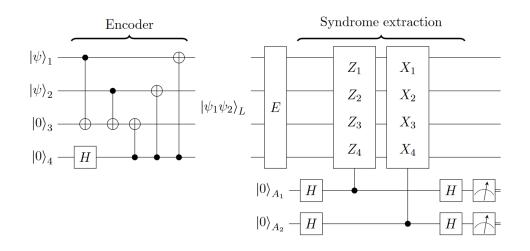
$$|01\rangle_L = \frac{1}{\sqrt{2}}(|1100\rangle + |0011\rangle)$$

$$|10\rangle_L = \frac{1}{\sqrt{2}}(|1010\rangle + |0101\rangle$$

$$|11\rangle_L = \frac{1}{\sqrt{2}}(|0110\rangle + |1001\rangle)$$

The above basis states are simultaneously stabilised by the following generators:

 $\begin{array}{c} X_1 X_2 X_3 X_4 \\ Z_1 Z_2 Z_3 Z_4 \end{array}$



Error	Syndrome, S	Error	Syndrome, S	Error	Syndrome, S
X_1	10	Z_1	01	Y_1	11
X_2	10	Z_2	01	Y_2	11
X_3	10	Z_3	01	Y_3	11
X_4	10	Z_4	01	Y_4	11

The syndrome table for the [4,2,2] detection code. Each single-qubit X/Y/Z error yields a non-zero syndrome. However, some syndromes are shared. -> This is a **detection** code not a **correction code**.

The Stabiliser Formalism for Quantum Error Correction

Stabiliser Codes

The Pauli Group: $\mathcal{P}^{\otimes n}$ is the Pauli-group $(\pm I, \pm iI, \pm X, \pm Y, \pm Z, \pm iX, \pm iY, \pm iZ)$ over n qubits. E.g., $X_1I_2Y_3 \in \mathcal{P}^{\otimes 3}$.

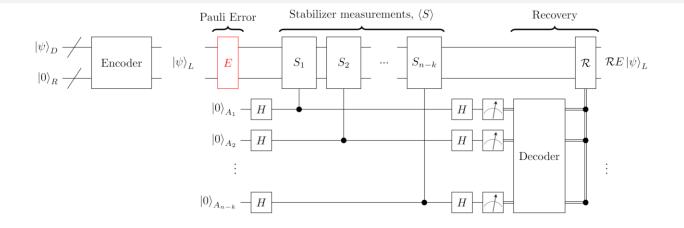
The stabilisers $S \subset \mathcal{P}^{\otimes N}$ of a quantum error correction code simultaneously act as the identity on the logical state $|\psi\rangle_L$ such that:

$$G_i |\psi\rangle_L = (+1) |\psi\rangle_L$$
 for all $G_i \in S$

To detect errors, a generating set $\langle S \rangle \subset S$ is measured using the Hadamard test syndrome extraction gadgets (as described in Lecture 25).

Minimal generating set of stabilisers

A generating $\langle S \rangle$ in minimal if all operators in S are independent. E.g., $[Z_1Z_2, Z_2Z_3, Z_1Z_3]$ is not a generating set, as $Z_1Z_3 = (Z_1Z_2)(Z_2Z_3)$.



Stabiliser code syndromes

Measurement of generator S_i will yield outcome:

- $s_i = 0$: if the error commutes with the generator, $[E, S_i] = 0$
- $s_i = 1$: if the error anti-commutes with the generator, $\{E, S_i\} = 0$

The **syndrome** is the binary string obtained by concatenating all of the generator measurement outcomes: $s = s_1 s_2 \dots s_m$, where *m* is the size of the generating set, m = |S|.

The Stabiliser Group is Abelian

The stabiliser group is **abelian**: all elements of \mathcal{S} mutually commute:

$$[G_i, G_j] = 0$$
 for all $G_i, G_j \in S$

Why?

Elements of ${\mathcal S}$ simultaneously stabilise the logical state such that

 $G_i G_j |\psi\rangle_L = (+1)(+1) |\psi\rangle_L$ for all $G_i, G_j \in S$

If $G_i G_j \in S$ then we also have that $G_j G_i \in S$. This can only be true if $[G_i, G_j] = 0$ for all $G_i, G_j \in S$.

Why (physicists edition)?

- The Heisenberg Uncertainty Principle stipulates that it is only possible to simultaneously measure **commuting** observables.
- Stabilisers are operators that are simultaneously measured on the logical state $|\psi\rangle_L$. Therefore, they must commute with one another.

Logical qubit count

The number of logical qubits k encoded by a stabiliser code is given by:

 $k = n - \operatorname{rank}(S)$

Where:

n: number of physical qubits

k: number of logical qubits

 $\operatorname{rank}(S)$: size of the minimal generating set |S|.

Example: The [[4,2,2]] code is defined by the following stabilisers:

$$\mathcal{S} = \langle S \rangle = \begin{pmatrix} X_1 X_2 X_3 X_4 \\ Z_1 Z_2 Z_3 Z_4 \end{pmatrix}$$

S is a minimal generating set of size |S| = 2. The code is defined over n = 4 physical qubits. The number of logical qubits encoded is:

$$k = n - \operatorname{rank}(S) = n - |S| = 4 - 2 = 2$$

Properties of logical operators

We have seen that logical operators correspond to Paulioperators L_i that act non-trivially on the basis states. E.g.

$$X_L|0\rangle_L = |1\rangle_L, \qquad X_L|1\rangle_L = |0\rangle_L$$

 $Z_L|0\rangle_L = |0\rangle_L, \qquad Z_L|1\rangle_L = (-1)|1\rangle_L$

This means that any logical operator is **not** a stabiliser. We define a logical group $\mathcal{L} \subset \mathcal{P}^{\otimes n}$. The intersection with the stabiliser group is empty:

 $\mathcal{L}\cap\mathcal{S}=\emptyset$

We have also seen that logical operators always map to the zero syndrome (they are undetectable). This means that any logical operator L_i must commute with all the stabilisers:

 $[L_i, G_j] = 0$ for all $L_i \in \mathcal{L}, G_i \in \mathcal{S}$

Every stabiliser code has 2k logical operators. For each logical qubit i there is:

- One X-type logical X_{L_i}
- One Z-type logical Z_{L_i}

We expect logical operator pairs X_{L_i} , Z_{L_i} to commute with one another:

 $\{X_{L_i}, Z_{L_i}\} = 0$

Properties of Logical Operators Continued

Any logical operator multiplied by stabiliser is a logical operator:

```
G_j L_i \in \mathcal{L} for all L_i \in \mathcal{L}, G_i \in \mathcal{S}.
```

Why?

Any logical operator L_i will commute with all the code stabilisers: $[L_i, G_i]=0$ for all $G_I \in S$.

 $G_j L_i |\psi\rangle_L = L_i G_j |\psi\rangle_L$

All stabilisers map onto the +1 eigenspace of $|\psi\rangle_L$:

 $L_i G_j |\psi\rangle_L = L_i |\psi\rangle_L$

This means any product of $G_i L_j$ has logical action identical to that of L_j .

Example: Logical Operators of the [[4,2,2]] Code

Example: The [[4,2,2]] code is defined by the following stabilisers:

 $\mathcal{S} = \langle S \rangle = \begin{pmatrix} X_1 X_2 X_3 X_4 \\ Z_1 Z_2 Z_3 Z_4 \end{pmatrix}$

S is a minimal generating set of size |S| = 2. The code is defined over n = 4 physical qubits. The number of logical qubits encoded is:

k = n - |S| = 4 - 2 = 2

A basis of the logical operators is:

$$\begin{array}{ll} X_{L1} = X_1 I_2 X_3 I_4, & Z_{L1} = Z_1 Z_2 I_3 I_4 \\ X_{L2} = X_1 X_2 I_2 I_4, & Z_{L2} = Z_1 I_2 Z_3 I_4 \end{array}$$

Non of the above can be obtained from a product of elements in S.

We also see that $\{X_{Li}, Z_{Li}\}_+=0$ for both logical operator pairs

$$\{X_1I_2X_3I_4, Z_1Z_2I_3I_4\} = 0$$

 $\{X_1X_2I_2I_4, Z_1I_2Z_3I_4\} = 0$

Designing Quantum Error Correction Codes

Error Detection Codes

Error detection codes have distance d = 2.

They can detect single-qubit Pauli errors but can't locate them.

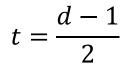
Example: the [[4,2,2]] code is a detection code. See syndrome table below:

Error	Syndrome, S	Error	Syndrome, S	Error	Syndrome, S
X_1	10	Z_1	01	Y_1	11
X_2	10	Z_2	01	Y_2	11
X_3	10	Z_3	01	Y_3	11
X_4	10	Z_4	01	Y_4	11

Error Correction Codes

For a stabiliser code to be correcting, we need to be able to **detect** and **locate** errors.

The number of errors a code can correct *t* is give by:



By rearranging the above, we see that for a stabiliser code to be correcting it must have $d \ge 3$.

Example: The Steane Code

The Steane code is defined by the following stabiliser group generated by the stabilisers *S*:

$$\mathcal{S} = \langle S \rangle = \left\langle \begin{matrix} I_1 & I_2 & I_3 & X_4 & X_5 & X_6 & X_7 \\ I_1 & X_2 & X_3 & I_4 & I_5 & X_6 & X_7 \\ X_1 & I_2 & X_3 & I_4 & X_5 & I_6 & X_7 \\ I_1 & I_2 & I_3 & Z_4 & Z_5 & Z_6 & Z_7 \\ I_1 & I_2 & Z_3 & I_4 & I_5 & Z_6 & Z_7 \\ Z_1 & I_2 & Z_3 & I_4 & Z_5 & I_6 & Z_7 \end{matrix} \right\rangle$$

Number of logical qubits:

- The code is defined over 7 physical qubits: n = 7
- S is minimal generating set of size |S| = 6
- The number of logical qubits is:

 $k = n - \operatorname{rank}(S) = n - |S| = 7 - 6 = 1$

Error (X)	Syndrome (s)	$\operatorname{Error}\left(Y\right)$	Syndrome (s)	Error (Z)	Syndrome (s)
X_1	000001	Y_1	001001	Z_1	001000
X_2	000010	Y_2	010010	Z_2	010000
X_3	000011	Y_3	011011	Z_3	011000
X_4	000100	Y_4	100100	Z_4	100000
X_5	000101	Y_5	101101	Z_5	101000
X_6	000110	Y_6	110110	Z_6	110000
X_7	000111	Y_7	111111	Z_7	111000

Syndrome table:

Each single-qubit error maps to a unique syndrome.

This means that the distance of this code is at least d = 3. It is a **correction** code.

The Steane Code: Logical Operators

 $|0\rangle_{L} = \frac{1}{\sqrt{8}} [|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle]$

 $|1\rangle_L = \frac{1}{\sqrt{8}} [|111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle]$

Logical operators

For the X-type logical operator X_L we need a Pauli-operator that acts as follows:

 $X_L|0\rangle_L = |1\rangle_L, \quad X_L|1\rangle_L = |0\rangle_L$

For the Z-type logical operator Z_L , we need a Pauli-operator that acts as follows:

$$Z_L|0\rangle_L = |0\rangle_L, \quad Z_L|1\rangle_L = -|1\rangle_L$$

Steane Code: Logical basis

$$X_L = X_1 X_2 X_3 X_4 X_5 X_6 X_7$$

$$Z_L = Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7$$

The above logical operators satisfy the anticommutation relation: $\{X_L, Z_L\} = 0$.

Steane Code: Distance

The Steane code is defined by the following stabiliser group:

$$S = \langle S \rangle = \left\langle \begin{matrix} I_1 I_2 I_3 X_4 X_5 X_6 X_7 \\ I_1 X_2 X_3 I_4 I_5 X_6 X_7 \\ X_1 I_2 X_3 I_4 X_5 I_6 X_7 \\ I_1 I_2 I_3 Z_4 Z_5 Z_6 Z_7 \\ I_1 I_2 Z_3 I_4 I_5 Z_6 Z_7 \\ Z_1 I_2 Z_3 I_4 Z_5 I_6 Z_7 \end{matrix} \right\rangle$$

A choice of logical operators are:

$$X_L = X_1 X_2 X_3 X_4 X_5 X_6 X_7$$

 $Z_L = Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7$

The **code distance** is the minimum Hamming-weight of a logical operator. Both of the logical operators above have weight 7. However, we have to consider all logical operators in the group \mathcal{L} .

Q: How do we know there isn't a logical operator with hamming weight <3? **A**: From the syndrome table, we saw that all single-qubit errors have a unique syndrome, implying that this is an error correction code. All error correction codes must have distance $d \ge 3$.

Any logical operator multiplied by a stabiliser is a logical operator: $G_i L_j \in S$ for all $G_i \in S$ and $L_j \in \mathcal{L}$.

If we multiply the X_L logical operator by the first stabiliser, we get another logical operator:

$$X'_{L} = (I_{1}I_{2}I_{3}X_{4}X_{5}X_{6}X_{7})(X_{1}X_{2}X_{3}X_{4}X_{5}X_{6}X_{7}) = X_{1}X_{2}X_{3}I_{4}I_{5}I_{6}I_{7}$$

Similarly, for the Z_L operator:

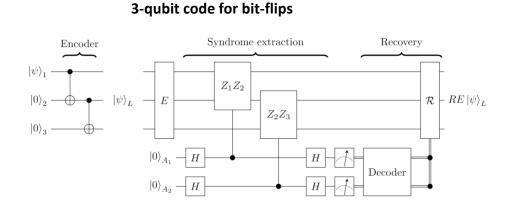
$$Z'_{L} = (I_{1}I_{2}I_{3}Z_{4}Z_{5}Z_{6}Z_{7})(Z_{1}Z_{2}Z_{3}Z_{4}Z_{5}Z_{6}Z_{7}) = Z_{1}Z_{2}Z_{3}I_{4}I_{5}I_{6}I_{7}$$

Both of the above logical operators have Hamming weight 3. The distance of the code is therefore d = 3.

The Steane code has node parameters: [[n = 7, k = 1, d = 3]]

The Shor Code: Code Construction by Concatenation

Code concatenation is a method of creating a larger code from two copies of a smaller code. The [[9,1,3]] code is a simple example that is obtained by concatenating a 3-bit repetition code for phase flips with a 3-qubit repition code for bit-flips.



Stabilisers:

 $S^{3bit} = \langle Z_1 Z_2, Z_2 Z_3 \rangle$

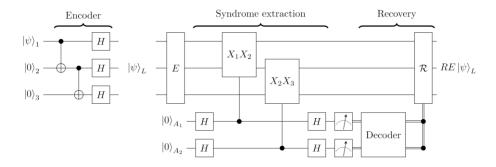
Basis states:

 $|0\rangle_L^{3bit} = |000\rangle, |1\rangle_L^{3bit} = |111\rangle$

Logical operators:

$$X_L^{3bit} = X_1 X_2 X_3, \quad Z_L^{3bit} = Z_1 I_2 I_3$$

3-qubit code for phase-flips



Stabilisers: $S^{3phase} = \langle X_1 X_2, X_2 X_3 \rangle$

Basis states:
$$|0\rangle_{L}^{3phase} = |+++\rangle, |1\rangle_{L}^{3phase} = |---\rangle$$

Logical operators:

$$X_L^{3phase} = Z_1 Z_2 Z_3, \quad Z_L^{3phase} = X_1 I_2 I_3$$

Shor Code: Encoding via Concatentation

Outer code encoding

$$|0\rangle_{L}^{outer} = |+++\rangle, \quad |1\rangle_{L}^{inner} = |---\rangle$$

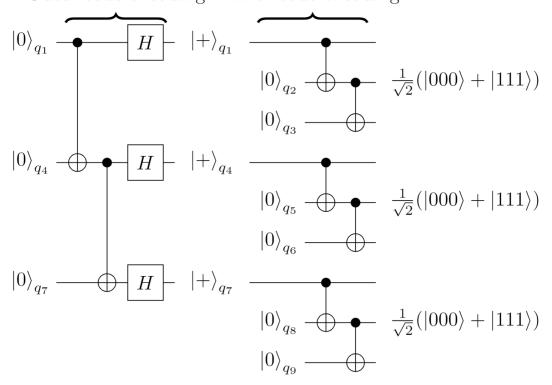
Inner code encoding: The basis states of the Shor code are obtained by replacing each qubit in the above with a logical qubit from the bit-flip code.

$$|0\rangle_{L} = \frac{1}{\sqrt{8}} (|0\rangle_{L}^{inner} + |1\rangle_{L}^{inner}) \otimes (|0\rangle_{L}^{inner} + |1\rangle_{L}^{inner}) \otimes (|0\rangle_{L}^{inner} + |1\rangle_{L}^{inner})$$
$$|1\rangle_{L} = \frac{1}{\sqrt{8}} (|0\rangle_{L}^{inner} - |1\rangle_{L}^{inner}) \otimes (|0\rangle_{L}^{inner} - |1\rangle_{L}^{inner}) \otimes (|0\rangle_{L}^{inner}) \otimes (|0\rangle_{L}^{inner})$$

This expands to:

$$|0\rangle_{L} = \frac{1}{\sqrt{8}} (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)$$

$$|1\rangle_L = \frac{1}{\sqrt{8}} (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle)$$



Outer code encoding Inner code encoding

Shor Code Stabilisers

From inner bit-flip code, we get three sets of two stabilisers:

$$\begin{array}{ll} Z_1 Z_2, & Z_2 Z_3 \\ Z_4 Z_5, & Z_5 Z_6 \\ Z_7 Z_8, & Z_8 Z_9 \end{array}$$

We get an additional two stabiliser from the outer code.

The outer code stabilisers are: $S_1^{outer} = XXI$, $S_2^{outer} = IXX$

We replace each Pauli from the outer code with a logical Pauli from the inner code:

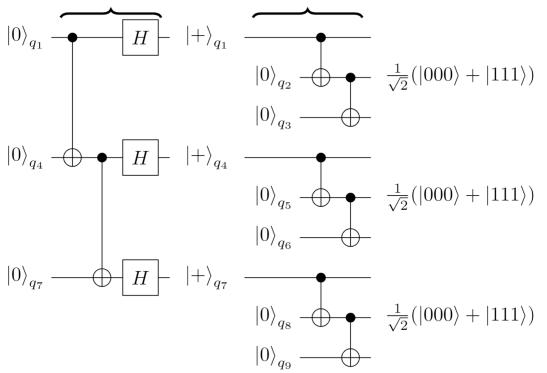
 $XXI \to (X_{L1}^{inner}) \otimes (X_{L2}^{inner}) \otimes (I_L^{inner})$

 $= (X_1X_2X_3) \otimes (X_4X_5X_6) \otimes (I_7I_8I_9) = X_1X_2X_3X_4X_5X_6I_7I_8I_9$

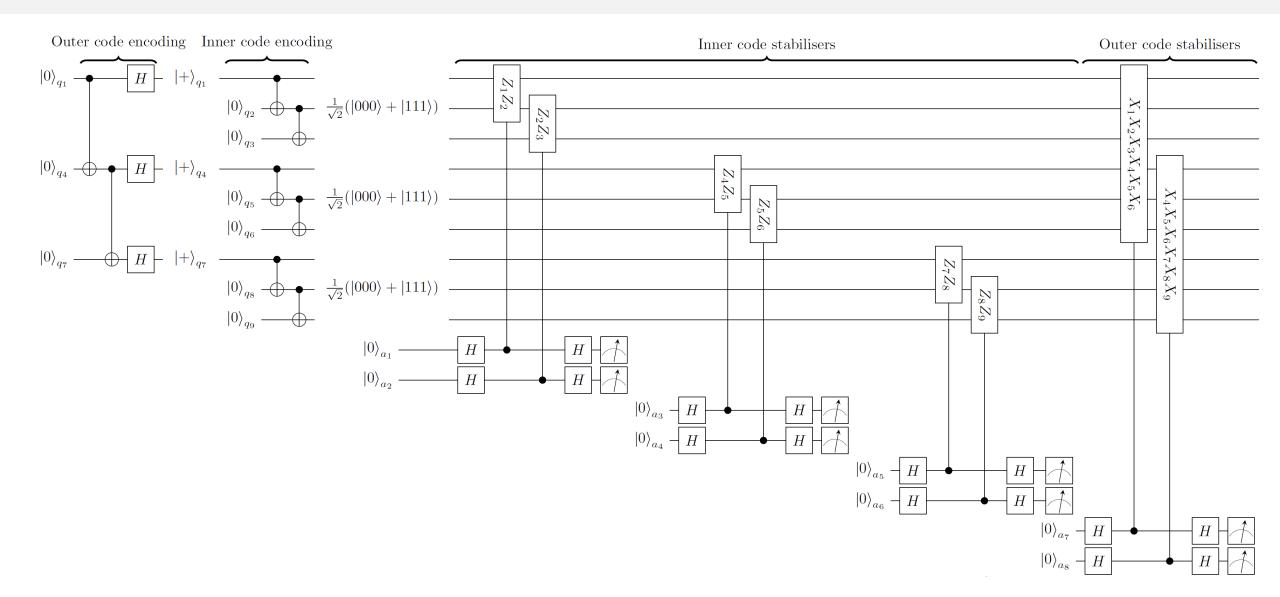
 $IXX \to (I_L^{inner}) \otimes (X_{L2}^{inner}) \otimes (X_{L3}^{inner})$

 $= (I_1 I_2 I_3) \otimes (X_4 X_5 X_6) \otimes (X_7 X_8 X_9) = I_1 I_2 I_3 X_4 X_5 X_6 X_7 X_8 X_9$

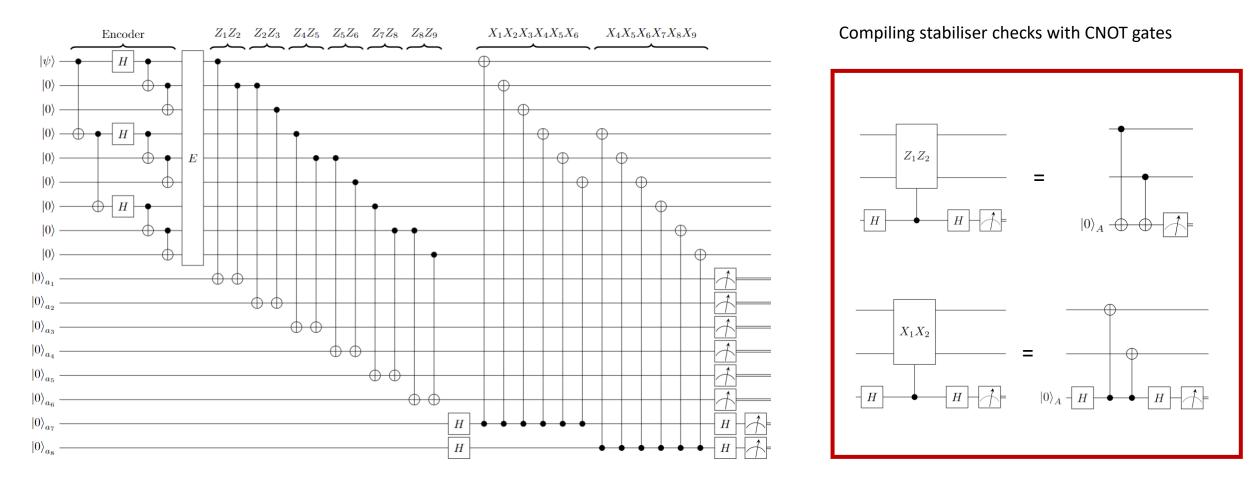
Outer code encoding Inner code encoding



Shor Code Stabilisers



Shor [[9,1,3]] Code Circuit



the university of edinburgh informatics

Shor Code: Logical Operators and Distance

$$|0\rangle_{L} = \frac{1}{\sqrt{8}} (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)$$
$$|1\rangle_{L} = \frac{1}{\sqrt{8}} (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle)$$

Outer code logical operators:

$$X_L^{outer} = ZZZ$$
$$Z_L^{outer} = XII$$

Inner code logical operators:

$$\begin{array}{l} X_L^{inner} = XXX\\ Z_L^{inner} = ZII \end{array}$$

To get the Shor code logical operators, we replace each Pauli in the outer code with a logical Pauli from the inner code

$$Z_L^{outer} = XII \rightarrow X_L^{inner} \otimes I_L^{inner} \otimes I_L^{inner} = X_1 X_2 X_3 I_4 I_5 I_6 I_7 I_8 I_9$$

 $X_L^{outer} = ZZZ \quad \rightarrow (Z_L^{inner}) \otimes (Z_L^{inner}) \otimes (Z_L^{inner}) = Z_1 I_2 I_3 Z_4 I_5 I_6 Z_7 I_8 I_9$

The Shor Code Logical operators are:

 $X_L = Z_1 I_2 I_3 Z_4 I_5 I_6 Z_7 I_8 I_9$, $Z_L = X_1 X_2 X_3 I_4 I_5 I_6 I_7 I_8 I_9$

The Shor Code has distance d = 3

Shor Code: [[n,k,d]] Parameters

Stabiliser generators

```
 \langle S \rangle = \left\langle \begin{matrix} Z_1 & Z_2 & I_3 & I_4 & I_5 & I_6 & I_7 & I_8 & I_9 \\ I_1 & Z_2 & Z_3 & I_4 & I_5 & I_6 & I_7 & I_8 & I_9 \\ I_1 & I_2 & I_3 & Z_4 & Z_5 & I_6 & I_7 & I_8 & I_9 \\ I_1 & I_2 & I_3 & I_4 & Z_5 & Z_6 & I_7 & I_8 & I_9 \\ I_1 & I_2 & I_3 & I_4 & I_5 & I_6 & Z_7 & Z_8 & I_9 \\ I_1 & I_2 & I_3 & I_4 & I_5 & I_6 & I_7 & Z_8 & Z_9 \\ X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & I_7 & I_8 & I_9 \\ I_1 & I_2 & I_3 & X_4 & X_5 & X_6 & X_7 & X_8 & X_9 \end{matrix} \right)
```

Logical qubit countCode distancek = n - |S|d=3 (see previous slide)Physical qubits, n = 9S is a minimal generating
set of size |S| = 8The logical qubit count isThe logical qubit count is

k = 9 - 8 = 1

Code parameters

[[n=9, k=1, d=3]]

Shor Code: Syndrome Table & Degenerate Errors

Error (X)	Syndrome (s)	Error (Y)	Syndrome (s)	Error (Z)	Syndrome (s)
X_1	1000000	Y_1	10000010	Z_1	0000010
X_2	11000000	Y_2	11000010	Z_2	0000010
X_3	0100000	Y_3	01000010	Z_3	0000010
X_4	00100000	Y_4	00100011	Z_4	00000011
X_5	00110000	Y_5	00110011	Z_5	00000011
X_6	00010000	Y_6	00010011	Z_6	00000011
X_7	00001000	Y_7	00001001	Z_7	0000001
X_8	00011000	Y_8	00011001	Z_8	0000001
X_9	00000100	Y_9	00000101	Z_9	0000001

Shor Code stabiliser generators:

$$\langle S \rangle = \left\langle \begin{matrix} Z_1 \ Z_2 \ I_3 \ I_4 \ I_5 \ I_6 \ I_7 \ I_8 \ I_9 \\ I_1 \ Z_2 \ Z_3 \ I_4 \ I_5 \ I_6 \ I_7 \ I_8 \ I_9 \\ I_1 \ I_2 \ I_3 \ Z_4 \ Z_5 \ I_6 \ I_7 \ I_8 \ I_9 \\ I_1 \ I_2 \ I_3 \ I_4 \ Z_5 \ Z_6 \ I_7 \ I_8 \ I_9 \\ I_1 \ I_2 \ I_3 \ I_4 \ I_5 \ I_6 \ Z_7 \ Z_8 \ I_9 \\ I_1 \ I_2 \ I_3 \ I_4 \ I_5 \ I_6 \ I_7 \ Z_8 \ Z_9 \\ X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ I_7 \ I_8 \ I_9 \\ I_1 \ I_2 \ I_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \end{matrix} \right)$$

Note that some of the Z-errors share a syndrome.

Q: Does this mean the Shor code is a detection code?

A: No. Consider the scenario in which the error $E = Z_1$ occurs. This error shares syndromes with Z_2 and Z_3 . Therefore, our decoder must choose Z_1, Z_2 or Z_3 at random:

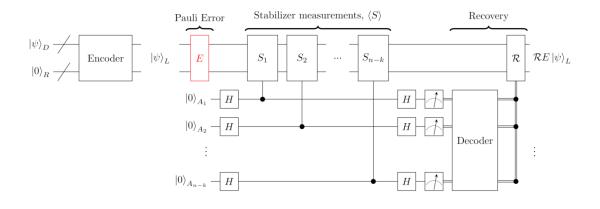
- If recovery $R = Z_1$, then $RE = I \in S$
- If recovery $R = Z_2$, then $RE = Z_1Z_2 \in S$
- If recovery $R = Z_3$, then $RE = Z_1Z_3 \in S$

In all three scenarios, the residual error $RE \in S$. Therefore, it doesn't matter which correction we choose and the Shor code is still a correction code.

Errors of the same Hamming weight that share syndromes are called **degenerate errors**.

Unique syndromes are a sufficient condition for a code to be correcting, but not necessary. $\sqrt{N^{1/2} \epsilon_0}$

The Error Correction Cycle



The error correction cycle

- 1. Encoder: creates the logical state $|\psi\rangle_L$
- 2. Stabiliser measurements: error detected by measuring stabiliser generators $S_i \in S$ yielding a binary syndrome s.
- 3. A decoding algorithm (run a classical co-processor) interprets the syndrome and suggests a recovery operation \mathcal{R} .
- 4. The recovery operation is applied to the register.

Determining QEC success

At the end of the cycle, we are left with the state $\mathcal{R}E|\psi\rangle_L$. We refer to $\mathcal{R}E$ as the residual error.

 Successful QEC: If *RE* ∈ S then the QEC cycle has been successful as the residual is equal to a stabiliser:

$$\mathcal{R}E|\psi\rangle_L = (+1)|\psi\rangle_L.$$

• Unsuccessful QEC: If $\mathcal{R}E \in \mathcal{L}$ then the encoded information is modified and the QEC procedure has failed.

Encoding circuits

The $|0\rangle_L$ codeword for any [[n,k,d]] stabiliser code can be obtained via a projection onto the +1 eigenspace of all of the stabilisers generators $S_i \in S$:

$$|0\rangle_L = \frac{1}{N} \prod_{S_i \in \langle S \rangle} (I + S_i) |0^{\otimes n}\rangle$$

where the 1/N term is a factor that ensures normalisation.

- This operator is non-unitary.
- However, it can be prepared by measuring all of the stabilisers on the blank $|0^{\otimes n}\rangle$ state.

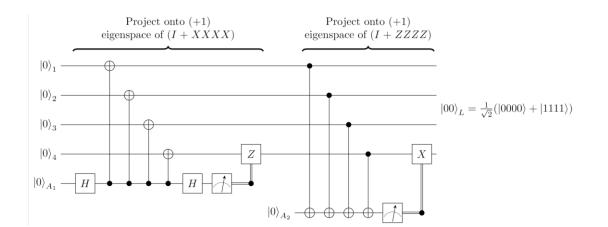
[[4,2,2]] Code Encoding Circuit

Immediately before the measurement of A_1 , the system is in the state:

$$\frac{1}{2}(1 + X_1 X_2 X_3 X_4)|0000\rangle|0\rangle_{A_1} + \frac{1}{2}(1 - X_1 X_2 X_3 X_4)|0000\rangle|1\rangle_{A_1}$$

- If A_1 is measured as `0', then we have projected onto the +1 eigenspace.
- If A_2 is measured as `1' then we are in the (-1) eigenspace. We can rotate into the correct subspace by applying any operator to the register that anti-commutes with XXXX.

For the $Z_1Z_2Z_3Z_4$ stabiliser, no correction is necessary as it stabilises both $|0000\rangle$ and $|1111\rangle$.



THE UNIVERSITY of EDINBURGH informatics

www.informatics.ed.ac.uk