
Quantum Error Correction:
Stabiliser Codes

IQC 2024 Lecture 28

Instructor: Joschka Roffe, joschka.roffe@ed.ac.uk

mailto:joschka.roffe@ed.ac.uk

Recap: The Challenges of
Quantum Error Correction

• More complicated error channels. In classical error
correction we only need to worry about bit flips. In
quantum error correction there are phase-flips too:

Bit flips: 𝑋 0 = |1⟩ and 𝑋 1 = |0⟩

Phase flips: Z + = |−⟩ and 𝑍 − = |+⟩

• The No-Cloning Theorem: This prevents us from
arbitrarily duplicating data as we do for classical
repetition codes

• Wavefunction collapse: How do we check for errors
in a quantum state without collapsing the encoded
quantum information.

Evolution on the

Bloch Sphere

due to bit-flip (X-

Pauli error)

Evolution on the

Bloch Sphere

due to phase-

flip (Z-Pauli error)

Recap: Subspace Encoding

If the logical state is un-errored, it in the codespace

𝜓 𝐿 = 𝛼 00 + 𝛽 11 ∈ 𝒞 ⊂ ℋ4

If it is subject to a single-qubit Pauli-X error, the state
is rotated into the error space. E.g.,

𝑋1 𝜓 𝐿 = 𝛼 10 + 𝛽 01 ∈ ℰ ⊂ ℋ4

We can detect the occurrence of a single-qubit X-
error by performing a measurement to determine
which subspace the logical qubit is in.

|00⟩ |11⟩

|10⟩ |01⟩

𝒞: 𝑐𝑜𝑑𝑠𝑝𝑎𝑐𝑒

ℰ: 𝑒𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒

Recap: Detecting errors via stabiliser measurement

The two-qubit code partitions the Hilbert space into a codespace and an
errorspace:

The code-space: 𝒞 = span 00 , 11)

The error-space: ℰ = span 01 , 10)

We can differentiate between the codespace and the error space using a
Hadamard test (recall Lecture 16). The projector onto the codespace is:

Π𝒞 = |00⟩⟨00| + |11⟩⟨11|

The projector on the errorspace is:

Πℰ = |01⟩⟨01| + |10⟩⟨10|

The following unitary operator has eigenvalues ±1 depending upon
whether it is applied to state in the codespace or the error space:

ΠS = Π𝒞 − Πℰ = Z1𝑍2

The above operator is referred to as a stabiliser as it acts as the identity
on the logical state:

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

The Hadamard test operator 𝑍1𝑍1 has ±1 eigenvalues.

If the state is in the codespace, we measure the (+1) eigenvalue.

𝑍1𝑍2 𝜓 𝐿 = 𝑍1𝑍2 𝛼 00 + 𝛽 11 = +1 𝜓 𝐿

If the state is in the errorspace, we measure the (-1) eigenvalue.

𝑍1𝑍2(𝑋1 𝜓 𝐿) = 𝑍1𝑍2 𝛼 10 + 𝛽 01 = (−1)𝐸 𝜓 𝐿

This enables us to detect errors without destroying the superposition.

Recap: The [[4,2,2]] Detection Code

To detect both bit and phase-type errors, we require an encoding with
stabilisers that anti-commute with both error types.

Example. The [4,2,2] code encodes two logical qubits in four physical
qubits and has the following logical basis states

00 𝐿 =
1

2
0000 + 1111)

01 𝐿 =
1

2
1100 + 0011)

10 𝐿 =
1

2
1010 + 0101)

11 𝐿 =
1

2
0110 + 1001)

The above basis states are simultaneously stabilised by the following
generators:

𝑋1𝑋2𝑋3𝑋4
𝑍1𝑍2𝑍3𝑍4

The syndrome table for the
[4,2,2] detection code. Each
single-qubit X/Y/Z error yields a
non-zero syndrome. However,
some syndromes are shared. ->
This is a detection code not a
correction code.

The Stabiliser
Formalism for
Quantum Error
Correction

Stabiliser Codes

The stabilisers 𝒮 ⊂ 𝒫⊗𝑁 of a quantum
error correction code simultaneously act
as the identity on the logical state 𝜓 𝐿
such that:

𝐺𝑖 𝜓 𝐿 = (+1) 𝜓 𝐿 for all 𝐺𝑖 ∈ 𝒮

To detect errors, a generating set 𝑆 ⊂ 𝒮
is measured using the Hadamard test
syndrome extraction gadgets (as
described in Lecture 25).

Minimal generating set of stabilisers

A generating ⟨𝑆⟩ in minimal if all operators
in 𝑆 are independent. E.g., [𝑍1𝑍2, 𝑍2𝑍3,
𝑍1𝑍3] is not a generating set, as 𝑍1𝑍3 =
(𝑍1𝑍2)(𝑍2𝑍3).

The Pauli Group: 𝒫⊗𝑛 is the Pauli-group
(±𝐼, ±𝑖𝐼, ±𝑋, ±𝑌, ±𝑍, ±i𝑋, ±i𝑌, ±i𝑍) over 𝑛 qubits. E.g.,

𝑋1𝐼2𝑌3 ∈ 𝒫⊗3.

Stabiliser code syndromes

Measurement of generator 𝑆𝑖 will yield outcome:

• si = 0: if the error commutes with the generator, 𝐸, 𝑆𝑖 = 0

• si= 1: if the error anti-commutes with the generator, E, 𝑆𝑖 = 0

The syndrome is the binary string obtained by concatenating all of the
generator measurement outcomes: s = s1s2 … sm, where 𝑚 is the size
of the generating set, 𝑚 = 𝑆 .

The Stabiliser Group is Abelian

The stabiliser group is abelian: all elements of 𝒮
mutually commute:

[𝐺𝑖 , 𝐺𝑗] = 0 for all 𝐺𝑖 , 𝐺𝑗 ∈ 𝒮

Why?

Elements of 𝒮 simultaneously stabilise the logical
state such that

𝐺𝑖𝐺𝑗 𝜓 𝐿 = +1 +1 𝜓 𝐿 for all 𝐺𝑖 , 𝐺𝑗 ∈ 𝒮

If 𝐺𝑖𝐺𝑗 ∈ 𝒮 then we also have that 𝐺𝑗𝐺𝑖 ∈ 𝒮.

This can only be true if [𝐺𝑖 , 𝐺𝑗] = 0 for all 𝐺𝑖 , 𝐺𝑗 ∈ 𝒮.

Why (physicists edition)?

• The Heisenberg Uncertainty Principle stipulates that it is only
possible to simultaneously measure commuting observables.

• Stabilisers are operators that are simultaneously measured on
the logical state 𝜓 𝐿. Therefore, they must commute with one
another.

Logical qubit count

The number of logical qubits 𝑘 encoded by a
stabiliser code is given by:

𝑘 = 𝑛 − rank(𝒮)

Where:

𝑛: number of physical qubits

𝑘: number of logical qubits

rank(𝒮): size of the minimal generating set |𝑆|.

Example: The [[4,2,2]] code is defined by the
following stabilisers:

𝒮 = ⟨𝑆⟩ = ർ ඀
𝑋1𝑋2𝑋3𝑋4

𝑍1𝑍2𝑍3𝑍4

𝑆 is a minimal generating set of size |𝑆|= 2. The
code is defined over 𝑛 = 4 physical qubits. The
number of logical qubits encoded is:

𝑘 = 𝑛 − rank 𝒮 = 𝑛 − 𝑆 = 4 − 2 = 2

Properties of logical operators

We have seen that logical operators correspond to Pauli-
operators 𝐿𝑖 that act non-trivially on the basis states. E.g.

𝑋𝐿 0 𝐿 = 1 𝐿 , 𝑋𝐿 1 𝐿 = 0 𝐿

𝑍𝐿 0 𝐿 = 0 𝐿 , 𝑍𝐿 1 𝐿 = −1 1 𝐿

This means that any logical operator is not a stabiliser. We
define a logical group ℒ ⊂ 𝒫⊗𝑛. The intersection with the
stabiliser group is empty:

ℒ ∩ 𝒮 = ∅

We have also seen that logical operators always map to the
zero syndrome (they are undetectable). This means that any
logical operator 𝐿𝑖 must commute with all the stabilisers:

𝐿𝑖 , 𝐺𝑗 = 0 for all 𝐿𝑖 ∈ ℒ, 𝐺𝑖 ∈ 𝒮

Every stabiliser code has 2𝑘 logical operators. For each
logical qubit 𝑖 there is:

• One X-type logical 𝑋𝐿𝑖

• One Z-type logical 𝑍𝐿𝑖

We expect logical operator pairs 𝑋𝐿𝑖
, 𝑍𝐿𝑖

 to commute

with one another:

{𝑋𝐿𝑖
, 𝑍𝐿𝑖

} = 0

Properties of Logical Operators Continued

Why?

Any logical operator 𝐿𝑖 will commute with all the code
stabilisers: [𝐿𝑖 , 𝐺𝑗]=0 for all 𝐺𝐽 ∈ 𝒮.

𝐺𝑗𝐿𝑖 𝜓 𝐿 = 𝐿𝑖𝐺𝑗 𝜓 𝐿

All stabilisers map onto the +1 eigenspace of 𝜓 𝐿:

𝐿𝑖𝐺𝑗 𝜓 𝐿 = 𝐿𝑖 𝜓 𝐿

This means any product of 𝐺𝑖𝐿𝑗 has logical action

identical to that of 𝐿𝑗.

Any logical operator multiplied
by stabiliser is a logical
operator:

𝐺𝑗𝐿𝑖 ∈ ℒ for all 𝐿𝑖 ∈ ℒ, 𝐺𝑖 ∈ 𝒮.

Example: Logical Operators of the [[4,2,2]] Code

Example: The [[4,2,2]] code is defined by the
following stabilisers:

𝒮 = 𝑆 = ർ ඀
𝑋1𝑋2𝑋3𝑋4

𝑍1𝑍2𝑍3𝑍4

𝑆 is a minimal generating set of size |S|= 2. The
code is defined over 𝑛 = 4 physical qubits. The
number of logical qubits encoded is:

𝑘 = 𝑛 − 𝑆 = 4 − 2 = 2

A basis of the logical operators is:

 𝑋𝐿1= 𝑋1𝐼2𝑋3𝐼4, 𝑍𝐿1 = 𝑍1𝑍2𝐼3𝐼4

𝑋𝐿2 = 𝑋1𝑋2𝐼2𝐼4, 𝑍𝐿2 = 𝑍1𝐼2𝑍3𝐼4

Non of the above can be obtained from a product
of elements in 𝒮.

We also see that {𝑋𝐿𝑖 , 𝑍𝐿𝑖}+= 0 for both logical
operator pairs

{𝑋1𝐼2𝑋3𝐼4, 𝑍1𝑍2𝐼3𝐼4} = 0

{𝑋1𝑋2𝐼2𝐼4, 𝑍1𝐼2𝑍3𝐼4} = 0

Designing Quantum Error Correction Codes

Error Detection Codes

Error detection codes have distance 𝑑 = 2.

They can detect single-qubit Pauli errors but
can’t locate them.

Example: the [[4,2,2]] code is a detection
code. See syndrome table below:

Error Correction Codes

For a stabiliser code to be correcting, we need to
be able to detect and locate errors.

The number of errors a code can correct 𝑡 is give
by:

𝑡 =
𝑑 − 1

2

By rearranging the above, we see that for a
stabiliser code to be correcting it must have 𝑑 ≥ 3.

Example: The Steane Code

The Steane code is defined by the following stabiliser group
generated by the stabilisers 𝑆:

Number of logical qubits:

• The code is defined over 7 physical qubits: 𝑛 = 7

• 𝑆 is minimal generating set of size 𝑆 = 6

• The number of logical qubits is:

𝑘 = 𝑛 − rank 𝒮 = 𝑛 − 𝑆 = 7 − 6 = 1

Syndrome table:

Each single-qubit error maps to a unique syndrome.

This means that the distance of this code is at least
𝑑 = 3. It is a correction code.

The Steane Code: Logical Operators

0 𝐿 =
1

8
[|0000000⟩ + |1010101 ⟩ + |0110011⟩ + |1100110⟩ + |0001111⟩ + |1011010⟩ + |0111100⟩ + |1101001⟩]

1 𝐿 =
1

8
[|1111111⟩ + |0101010⟩ + |1001100⟩ + |0011001⟩ + |1110000⟩ + |0100101⟩ + |1000011⟩ + |0010110⟩]

Logical operators

For the X-type logical operator 𝑋𝐿 we need a
Pauli-operator that acts as follows:

𝑋𝐿 0 𝐿 = 1 𝐿, 𝑋𝐿 1 𝐿 = 0 𝐿

For the Z-type logical operator 𝑍𝐿, we need a
Pauli-operator that acts as follows:

𝑍𝐿 0 𝐿 = 0 𝐿, 𝑍𝐿 1 𝐿 = − 1 𝐿

Steane Code: Logical basis

𝑋𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7

𝑍𝐿 = 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7

The above logical operators satisfy the anti-
commutation relation: {𝑋𝐿, 𝑍𝐿} = 0.

Steane Code: Distance

The Steane code is defined by the following stabiliser group:

A choice of logical operators are:

𝑋𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7

𝑍𝐿 = 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7

The code distance is the minimum Hamming-weight of a logical
operator. Both of the logical operators above have weight 7.
However, we have to consider all logical operators in the group ℒ.

Any logical operator multiplied by a stabiliser is a logical operator:
𝐺𝑖𝐿𝑗 ∈ 𝒮 for all 𝐺𝑖 ∈ 𝒮 and 𝐿𝑗 ∈ ℒ.

If we multiply the 𝑋𝐿 logical operator by the first stabiliser, we get
another logical operator:

𝑋𝐿
′ = (𝐼1𝐼2𝐼3𝑋4𝑋5𝑋6𝑋7) 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 = X1X2X3I4I5I6I7

Similarly, for the 𝑍𝐿 operator:

𝑍𝐿
′ = (𝐼1𝐼2𝐼3𝑍4𝑍5𝑍6𝑍7) 𝑍1𝑍2𝑍3𝑍4𝑍5𝑍6𝑍7 = 𝑍1𝑍2𝑍3I4I5I6I7

Both of the above logical operators have Hamming weight 3. The
distance of the code is therefore 𝑑 = 3.

The Steane code has node parameters: [[𝑛 = 7, 𝑘 = 1, 𝑑 = 3]]

Q: How do we know there isn’t a logical operator with hamming weight <3?
A: From the syndrome table, we saw that all single-qubit errors have a unique
syndrome, implying that this is an error correction code. All error correction
codes must have distance 𝑑 ≥ 3.

The Shor Code: Code Construction by Concatenation

Code concatenation is a method of creating a larger code from two copies of a smaller code. The [[9,1,3]] code is a simple example that is obtained by
concatenating a 3-bit repetition code for phase flips with a 3-qubit repition code for bit-flips.

3-qubit code for bit-flips 3-qubit code for phase-flips

Stabilisers:
𝑆3𝑏𝑖𝑡 = ⟨𝑍1𝑍2, 𝑍2 𝑍3⟩

Basis states:
0 𝐿

3𝑏𝑖𝑡 = 000 , 1 𝐿
3𝑏𝑖𝑡 = |111⟩

Logical operators:

𝑋𝐿
3𝑏𝑖𝑡 = 𝑋1𝑋2𝑋3, 𝑍𝐿

3𝑏𝑖𝑡 = 𝑍1𝐼2𝐼3

Stabilisers:
𝑆3𝑝ℎ𝑎𝑠𝑒 = ⟨𝑋1𝑋2, 𝑋2 𝑋3⟩

Basis states:

0 𝐿
3𝑝ℎ𝑎𝑠𝑒

= | ++ +⟩, 1 𝐿
3𝑝ℎ𝑎𝑠𝑒

= | −− −⟩

Logical operators:

𝑋𝐿
3𝑝ℎ𝑎𝑠𝑒

= 𝑍1𝑍2𝑍3, 𝑍𝐿
3𝑝ℎ𝑎𝑠𝑒

= 𝑋1𝐼2𝐼3

Shor Code: Encoding via Concatentation

Outer code encoding

0 𝐿
𝑜𝑢𝑡𝑒𝑟 = | ++ +⟩, 1 𝐿

𝑖𝑛𝑛𝑒𝑟 = | −− −⟩

Inner code encoding: The basis states of the Shor code are obtained by
replacing each qubit in the above with a logical qubit from the bit-flip code.

0 𝐿 =
1

8
(0 𝐿

𝑖𝑛𝑛𝑒𝑟 + 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (0 𝐿

𝑖𝑛𝑛𝑒𝑟+ 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (0 𝐿

𝑖𝑛𝑛𝑒𝑟+ 1 𝐿
𝑖𝑛𝑛𝑒𝑟)

1 𝐿 =
1

8
(0 𝐿

𝑖𝑛𝑛𝑒𝑟 − 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (0 𝐿

𝑖𝑛𝑛𝑒𝑟− 1 𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (0 𝐿

𝑖𝑛𝑛𝑒𝑟− 1 𝐿
𝑖𝑛𝑛𝑒𝑟)

This expands to:

0 𝐿 =
1

8
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)

1 𝐿 =
1

8
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)

Shor Code Stabilisers

From inner bit-flip code, we get three sets of two stabilisers:

𝑍1𝑍2, 𝑍2 𝑍3

𝑍4𝑍5, 𝑍5 𝑍6

𝑍7𝑍8, 𝑍8 𝑍9

We get an additional two stabiliser from the outer code.

The outer code stabilisers are: 𝑆1
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝑋𝐼, 𝑆2

𝑜𝑢𝑡𝑒𝑟 = 𝐼𝑋𝑋

We replace each Pauli from the outer code with a logical Pauli from the inner code:

𝑋𝑋𝐼 → (𝑋𝐿1
𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿2

𝑖𝑛𝑛𝑒𝑟) ⊗ (𝐼𝐿
𝑖𝑛𝑛𝑒𝑟)

= (𝑋1𝑋2𝑋3) ⊗ (𝑋4𝑋5𝑋6) ⊗ (𝐼7𝐼8𝐼9) = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝐼7𝐼8𝐼9

I𝑋𝑋 → (𝐼𝐿
𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿2

𝑖𝑛𝑛𝑒𝑟) ⊗ (𝑋𝐿3
𝑖𝑛𝑛𝑒𝑟)

= (𝐼1𝐼2𝐼3) ⊗ (𝑋4𝑋5𝑋6) ⊗ 𝑋7𝑋8𝑋9 = 𝐼1𝐼2𝐼3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9

Shor Code Stabilisers

Shor [[9,1,3]] Code Circuit

=

=

Compiling stabiliser checks with CNOT gates

Shor Code: Logical Operators and Distance

Outer code logical operators:

𝑋𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑍𝑍𝑍

𝑍𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝐼𝐼

Inner code logical operators:

𝑋𝐿
𝑖𝑛𝑛𝑒𝑟 = 𝑋𝑋𝑋

𝑍𝐿
𝑖𝑛𝑛𝑒𝑟 = 𝑍𝐼𝐼

0 𝐿 =
1

8
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)

1 𝐿 =
1

8
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)

To get the Shor code logical operators, we replace each Pauli in the outer code
with a logical Pauli from the inner code

𝑍𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑋𝐼𝐼 → 𝑋𝐿

𝑖𝑛𝑛𝑒𝑟 ⊗ 𝐼𝐿
𝑖𝑛𝑛𝑒𝑟 ⊗ 𝐼𝐿

𝑖𝑛𝑛𝑒𝑟 = 𝑋1𝑋2𝑋3𝐼4𝐼5𝐼6𝐼7𝐼8𝐼9

𝑋𝐿
𝑜𝑢𝑡𝑒𝑟 = 𝑍𝑍𝑍 → (𝑍𝐿

𝑖𝑛𝑛𝑒𝑟) ⊗ 𝑍𝐿
𝑖𝑛𝑛𝑒𝑟 ⊗ (𝑍𝐿

𝑖𝑛𝑛𝑒𝑟) = 𝑍1𝐼2𝐼3𝑍4𝐼5𝐼6𝑍7𝐼8𝐼9

The Shor Code Logical operators are:

𝑋𝐿 = 𝑍1𝐼2𝐼3𝑍4𝐼5𝐼6𝑍7𝐼8𝐼9 , 𝑍𝐿 = 𝑋1𝑋2𝑋3𝐼4𝐼5𝐼6𝐼7𝐼8𝐼9

The Shor Code has distance 𝑑 = 3

Shor Code: [[n,k,d]] Parameters

Logical qubit count

𝑘 = 𝑛 − 𝑆

Physical qubits, 𝑛 = 9

𝑆 is a minimal generating
set of size 𝑆 = 8

The logical qubit count is

𝑘 = 9 − 8 = 1

Code distance

d=3 (see previous slide)

Code parameters

[[n=9, k=1, d=3]]

Stabiliser generators

Shor Code: Syndrome Table & Degenerate Errors

Note that some of the Z-errors share a syndrome.

Q: Does this mean the Shor code is a detection code?

A: No. Consider the scenario in which the error E = 𝑍1 occurs. This error
shares syndromes with 𝑍2 and 𝑍3. Therefore, our decoder must choose
𝑍1, 𝑍2 or 𝑍3 at random:

• If recovery 𝑅 = 𝑍1, then 𝑅𝐸 = 𝐼 ∈ 𝒮

• If recovery 𝑅 = 𝑍2, then 𝑅𝐸 = 𝑍1𝑍2 ∈ 𝒮

• If recovery 𝑅 = 𝑍3, then 𝑅𝐸 = Z1Z3 ∈ 𝒮

In all three scenarios, the residual error 𝑅𝐸 ∈ 𝒮. Therefore, it doesn’t
matter which correction we choose and the Shor code is still a correction
code.

Errors of the same Hamming weight that share syndromes are called
degenerate errors.

Unique syndromes are a sufficient condition for a code to be correcting,
but not necessary.

Shor Code stabiliser generators:

The Error Correction Cycle

The error correction cycle

1. Encoder: creates the logical state 𝜓 𝐿

2. Stabiliser measurements: error detected by
measuring stabiliser generators 𝑆𝑖 ∈ 𝑆 yielding a
binary syndrome 𝑠.

3. A decoding algorithm (run a classical co-processor)
interprets the syndrome and suggests a recovery
operation ℛ.

4. The recovery operation is applied to the register.

Determining QEC success

At the end of the cycle, we are left with the state
ℛ𝐸 𝜓 𝐿. We refer to ℛ𝐸 as the residual error.

• Successful QEC: If ℛ𝐸 ∈ 𝒮 then the QEC cycle has
been successful as the residual is equal to a
stabiliser:

ℛ𝐸 𝜓 𝐿 = (+1) 𝜓 𝐿.

• Unsuccessful QEC: If ℛ𝐸 ∈ ℒ then the encoded
information is modified and the QEC procedure
has failed.

Encoding circuits

The 0 𝐿codeword for any [[n,k,d]] stabiliser code can be obtained via a
projection onto the +1 eigenspace of all of the stabilisers generators 𝑆𝑖 ∈ 𝑆:

0 𝐿 =
1

𝑁
ෑ

𝑆𝑖∈⟨𝑆⟩

(𝐼 + 𝑆𝑖) |0⊗𝑛⟩

where the 1/𝑁 term is a factor that ensures normalisation.

• This operator is non-unitary.

• However, it can be prepared by measuring all of the stabilisers on the blank
|0⊗𝑛⟩ state.

[[4,2,2]] Code Encoding Circuit

Immediately before the measurement of 𝐴1, the system is in the
state:

1

2
1 + 𝑋1𝑋2𝑋3𝑋4 0000 0 𝐴1

+
1

2
1 − 𝑋1𝑋2𝑋3𝑋4 0000 1 𝐴1

• If 𝐴1is measured as `0’, then we have projected onto the +1
eigenspace.

• If 𝐴2 is measured as `1’ then we are in the (−1) eigenspace.
We can rotate into the correct subspace by applying any
operator to the register that anti-commutes with 𝑋𝑋𝑋𝑋.

For the 𝑍1𝑍2𝑍3𝑍4 stabiliser, no correction is necessary as it
stabilises both |0000⟩ and |1111⟩.

www.informatics.ed.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

