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Recap: Stabiliser Codes

The stabilisers 𝒮 ⊂ 𝒫⊗𝑁 of a quantum 
error correction code simultaneously act 
as the identity on the logical state 𝜓 𝐿
such that:

𝐺𝑖 𝜓 𝐿 = (+1) 𝜓 𝐿 for all   𝐺𝑖 ∈ 𝒮

To detect errors, a generating set 𝑆 ⊂ 𝒮
is measured using the Hadamard test 
syndrome extraction gadgets (as 
described in Lecture 25).

Minimal generating set of stabilisers

A generating ⟨𝑆⟩ in minimal if all operators 
in 𝑆 are independent. E.g., [𝑍1𝑍2, 𝑍2𝑍3,
𝑍1𝑍3] is not a generating set, as 𝑍1𝑍3 =
(𝑍1𝑍2)(𝑍2𝑍3).

The Pauli Group: 𝒫⊗𝑛 is the Pauli-group 
(±𝐼, ±𝑖𝐼, ±𝑋, ±𝑌, ±𝑍, ±i𝑋, ±i𝑌, ±i𝑍) over 𝑛 qubits. E.g., 

𝑋1𝐼2𝑌3 ∈ 𝒫⊗3. 

Stabiliser code syndromes

Measurement of generator 𝑆𝑖  will yield outcome:

•   si = 0:    if the error commutes with the generator, 𝐸, 𝑆𝑖 = 0

•  si=  1:    if the error anti-commutes with the generator, E, 𝑆𝑖 = 0

The syndrome is the binary string obtained by concatenating all of the 
generator measurement outcomes: s = s1s2 … sm, where 𝑚 is the size 
of the generating set, 𝑚 = 𝑆 . 



Recap: The [9,1,3] Shor Code



Calderbank-Shor-Steane (CSS) Codes

Note that the stabilisers for the nine qubit 
Shor code can be partitioned into two types:

• X-type stabilisers 𝑆𝑋 that detect phase-flips

• Z-type stabilisers 𝑆𝑍 that detect bit-flips.

Quantum error correction codes that partition 
stabilisers in this way are referred to as 
Calderbank-Shor-Steane (CSS) codes. The 
[[4,2,2]] code, the [[7,1,3]] Steane code are 
also examples of CSS-type stabiliser codes.

We think of a CSS code as a combination of two separate error 
correction protocols: one for bit-flips and one for phase-flips. The 
full stabiliser group is generated by:

𝒮 = 𝒮𝑋 ∪ 𝒮𝑍 = ⟨𝑆𝑋∪ 𝑆𝑍⟩



Quantum Error Correction Code 
Constructions

The Challenge of QEC Code design

Quantum code design for CSS codes is complicated by 
the fact that the stabiliser group must be Abelian. I.e., 

[𝐺𝑖
𝑋 , 𝐺𝑗

𝑍] = 0   for all  𝐺𝑖
𝑋 ∈ 𝒮𝑋 and 𝐺𝑗

𝑍 ∈ 𝒮𝑍

Finding generating sets of stabilisers 𝑆𝑋 and 𝑆𝑍 is not 
straightforward. E.g., we can’t just translate classical 
error correction codes into the 𝑆𝑋 and 𝑆𝑍 of a quantum 
error correction codes.

Up to this point, all the of the code constructions we have 
looked at – the [[4,2,2]] code, the Steane code, and the 
Shor Code – have been hand crafted. 

The goal is now to develop systematics procedures for 
designing large-scale CSS stabiliser codes. 

Requirements for a Quantum Code Construction

A systematic approach for CSS code design must address 
the following:

• Generating Stabiliser Sets: Provide a method to 
construct 𝑆𝑋 and 𝑆𝑍 such that they are guaranteed to 
commute.

• Scalability: Ensure that the code distance 𝑑 increases 
with the size of the system.



The Surface Code

The surface code is the leading construction for 
experimental quantum error correction. It has two 
major advantages:

• It can be implemented using nearest-neighbour 
CNOT gates between qubits arrange in a two-
dimensional grid. This is a particularly useful for 
many qubit hardware types – e.g. superconducting 
qubits – where long-range gates are difficult to 
implement with high-fidelity.

• The distance can be straightforwardly scaled by 
increasing the size of the qubit grid.

The Tanner (connectivity) graph for 
the 𝑑 = 3 surface code.



Classical vs. Quantum Circuits

Classical circuit

• Provides information about what 
operations are performed.

• Tells us exactly how to wire together the 
circuit.

Quantum Circuit

• Provides information about what 
operations are performed.

• Wires represent the passage of time. I.e., 
they do not actually correspond to wires 
and tell us nothing about the qubit 
connectivity.



The Tanner Graph Representation of QEC

Tanner graphs provide a graphical 
representation of quantum error 
correction that allows us to design codes 
in a way that is connectivity aware.



The Tanner Graph Representation of QEC

Tanner graphs provide a graphical 
representation of quantum error 
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Data 
qubits



The Tanner Graph Representation of QEC

Z-type stabiliser 
measurement qubit

X-type stabiliser 
measurement qubit

Tanner graphs provide a graphical 
representation of quantum error 
correction that allows us to design codes 
in a way that is connectivity aware.



The Surface Code 4-Cycle

Z-type stabiliser 
measurement qubit

X-type stabiliser 
measurement qubit

Data qubit 1

Data 
qubit 2

Stabilisers:

𝑆 = 𝑆𝑋 ∪ 𝑆𝑍 = 𝑆1 ∪ 𝑆2 = ⟨𝑍1𝑍2, 𝑋1𝑋2⟩

Both stabilisers intersect on two-qubits: they 
commute!

Logical qubit count

𝑘 = 𝑛 − 𝑆 = 2 − 2 = 0

The surface code four-cycle does not encode 
information! 



The Surface Code

Larger surface codes can be 
constructed by tiling four-
cycles together.



The Surface Code

Larger surface codes can be 
constructed by tiling four-
cycles together.



The 𝒅 = 𝟑 Surface Code

Larger surface codes can be 
constructed by tiling four-
cycles together.

The construction guarantees 
that any two X- and Z-type 
stabiliser always intersect non-
trivially on an even number of 
qubits. => The stabilisers 
always commute!



Surface codes: logical qubit count

This surface code has 𝑛 = 13 
physical (data) qubits

For a surface patch of 
any size, the number 
of stabiliser generators 
is 𝑆 = 𝑛 − 1.

This means all surface 
codes (other than the 
surface code four-
cycle) encode 𝑘 = 1 
logical qubits

There are 12 auxiliary qubits 
measuring 12 independent 
stabiliser generators. => 
𝑟𝑎𝑛𝑘 𝒮 = 𝑆 = 12

Logical qubit count:

𝑘 = 𝑛 − 𝑆 = 1



Surface codes: error detection

X

1

1

Z1 1

Surface codes are CSS codes: 
X- and Z-type errors are 
detected by different 
stabilisers.

Z-type stabiliser 
measurement 

syndrome 

X-type stabiliser 
measurement

syndrome

X-error Z-error
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Surface codes: error detection

Z1 1

Surface codes are CSS codes: 
X- and Z-type errors are 
detected by different 
stabilisers.
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Z-error



Surface codes: error detection
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Surface code: error 
chains

1



Surface code: error 
chains

X1 X

X

X 1

X-error
chain

Error chains in the bulk 
have syndrome 
Hamming weight 2.
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Surface code: error 
chains

X1 X
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X 1
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Z Z 1
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Z-type
boundary 

error

Z
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Error chains in the bulk 
have syndrome 
Hamming weight 2.

Error chains starting at 
the boundary have 
syndrome Hamming 
weight 1.



Zero-syndrome error 
chains

1

X

If two boundary error 
chains merge, we get 
an undetectable zero-
weight syndrome.

1

X



Zero-syndrome error 
chains

X

If two boundary error 
chains merge, we get 
an undetectable zero-
weight syndrome.

The highlighted error 
chain is equivalent to 
stabiliser 𝑆6. => It has 
trivial action on the 
codespace.

X

X



Logical operators

X

If two boundary error chains 
merge, we get an 
undetectable zero-weight 
syndrome.

If boundary operators from 
opposite ends of the lattice 
merge, we get a non-zero 
syndrome error chain that is 
not in the stabiliser group. 
This is a logical operator.

X

X

XX1 1



Logical operators

X

If two boundary error chains 
merge, we get an 
undetectable zero-weight 
syndrome.

If boundary operators from 
opposite ends of the lattice 
merge, we get a non-zero 
syndrome error chain that is 
not in the stabiliser group. 
This is a logical operator.

X

X

XXX



X- and Z-logical 
operators

X

X-Logical operators span 
from left-to-right boundary.

Z-Logical operators span 
from top-to-bottom 
boundary

We also see that the two 
logical operator anti-
commute as they intersect 
on one qubit:

𝑋𝐿, 𝑍𝐿 = 0

X

X

XXX

Z Z

Z

Z

Z

Z



Surface code 
distance

X

The code distance corresponds to 
the minimum-weight logical 
operator.

In the surface code, these 
operators are error chains that 
span directly from one boundary 
to another.

The distance of the surface code 
is given by the size of the lattice.

This surface code is defined on a 
5x5 lattice. The distance 𝑑 = 5.

X XXX

Z

Z

Z

Z

Z



Scaling the Surface Code

𝑑 = 2 Surface 
code

𝑑 = 3 Surface 
code

𝑑 = 5 Surface 
code

The distance of surface code scales 𝑑~𝑂( 𝑛), 
where 𝑛 in the number of physical qubits. By 
increasing the distance we can arbitrarily supress 
the logical error rate. 



Q: What sort of distances 
will we need to supress the 
logical error rate to 
algorithmically useful levels 
𝑝𝐿 ≈ 10−12 

A: Estimates suggest 𝑑 ≈
27 will be required. This 
corresponds to a surface 
code patch with > 1000 
physical qubits. 

Over 99.9% of the qubits 
in a quantum computer 
will be dedicated to error 
correction!



When will surface code 
quantum computers be useful?

• The Google Team have implemented 
surface codes on a 107 qubit chip.

• Estimates suggest operationally useful 
quantum computers will require 
surface codes of size 𝑑 ≈ 27 on chips 
>1000 qubits.



Google’s Roadmap to Fault-Tolerance



www.informatics.ed.ac.uk
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