
Quantum Error Correction:
Surface Codes

IQC 2024 Lecture 29

Instructor: Joschka Roffe, joschka.roffe@ed.ac.uk

mailto:joschka.roffe@ed.ac.uk

Recap: Stabiliser Codes

The stabilisers 𝒮 ⊂ 𝒫⊗𝑁 of a quantum
error correction code simultaneously act
as the identity on the logical state 𝜓 𝐿
such that:

𝐺𝑖 𝜓 𝐿 = (+1) 𝜓 𝐿 for all 𝐺𝑖 ∈ 𝒮

To detect errors, a generating set 𝑆 ⊂ 𝒮
is measured using the Hadamard test
syndrome extraction gadgets (as
described in Lecture 25).

Minimal generating set of stabilisers

A generating ⟨𝑆⟩ in minimal if all operators
in 𝑆 are independent. E.g., [𝑍1𝑍2, 𝑍2𝑍3,
𝑍1𝑍3] is not a generating set, as 𝑍1𝑍3 =
(𝑍1𝑍2)(𝑍2𝑍3).

The Pauli Group: 𝒫⊗𝑛 is the Pauli-group
(±𝐼, ±𝑖𝐼, ±𝑋, ±𝑌, ±𝑍, ±i𝑋, ±i𝑌, ±i𝑍) over 𝑛 qubits. E.g.,

𝑋1𝐼2𝑌3 ∈ 𝒫⊗3.

Stabiliser code syndromes

Measurement of generator 𝑆𝑖 will yield outcome:

• si = 0: if the error commutes with the generator, 𝐸, 𝑆𝑖 = 0

• si= 1: if the error anti-commutes with the generator, E, 𝑆𝑖 = 0

The syndrome is the binary string obtained by concatenating all of the
generator measurement outcomes: s = s1s2 … sm, where 𝑚 is the size
of the generating set, 𝑚 = 𝑆 .

Recap: The [9,1,3] Shor Code

Calderbank-Shor-Steane (CSS) Codes

Note that the stabilisers for the nine qubit
Shor code can be partitioned into two types:

• X-type stabilisers 𝑆𝑋 that detect phase-flips

• Z-type stabilisers 𝑆𝑍 that detect bit-flips.

Quantum error correction codes that partition
stabilisers in this way are referred to as
Calderbank-Shor-Steane (CSS) codes. The
[[4,2,2]] code, the [[7,1,3]] Steane code are
also examples of CSS-type stabiliser codes.

We think of a CSS code as a combination of two separate error
correction protocols: one for bit-flips and one for phase-flips. The
full stabiliser group is generated by:

𝒮 = 𝒮𝑋 ∪ 𝒮𝑍 = ⟨𝑆𝑋∪ 𝑆𝑍⟩

Quantum Error Correction Code
Constructions

The Challenge of QEC Code design

Quantum code design for CSS codes is complicated by
the fact that the stabiliser group must be Abelian. I.e.,

[𝐺𝑖
𝑋 , 𝐺𝑗

𝑍] = 0 for all 𝐺𝑖
𝑋 ∈ 𝒮𝑋 and 𝐺𝑗

𝑍 ∈ 𝒮𝑍

Finding generating sets of stabilisers 𝑆𝑋 and 𝑆𝑍 is not
straightforward. E.g., we can’t just translate classical
error correction codes into the 𝑆𝑋 and 𝑆𝑍 of a quantum
error correction codes.

Up to this point, all the of the code constructions we have
looked at – the [[4,2,2]] code, the Steane code, and the
Shor Code – have been hand crafted.

The goal is now to develop systematics procedures for
designing large-scale CSS stabiliser codes.

Requirements for a Quantum Code Construction

A systematic approach for CSS code design must address
the following:

• Generating Stabiliser Sets: Provide a method to
construct 𝑆𝑋 and 𝑆𝑍 such that they are guaranteed to
commute.

• Scalability: Ensure that the code distance 𝑑 increases
with the size of the system.

The Surface Code

The surface code is the leading construction for
experimental quantum error correction. It has two
major advantages:

• It can be implemented using nearest-neighbour
CNOT gates between qubits arrange in a two-
dimensional grid. This is a particularly useful for
many qubit hardware types – e.g. superconducting
qubits – where long-range gates are difficult to
implement with high-fidelity.

• The distance can be straightforwardly scaled by
increasing the size of the qubit grid.

The Tanner (connectivity) graph for
the 𝑑 = 3 surface code.

Classical vs. Quantum Circuits

Classical circuit

• Provides information about what
operations are performed.

• Tells us exactly how to wire together the
circuit.

Quantum Circuit

• Provides information about what
operations are performed.

• Wires represent the passage of time. I.e.,
they do not actually correspond to wires
and tell us nothing about the qubit
connectivity.

The Tanner Graph Representation of QEC

Tanner graphs provide a graphical
representation of quantum error
correction that allows us to design codes
in a way that is connectivity aware.

The Tanner Graph Representation of QEC

Tanner graphs provide a graphical
representation of quantum error
correction that allows us to design codes
in a way that is connectivity aware.

Data
qubits

The Tanner Graph Representation of QEC

Z-type stabiliser
measurement qubit

X-type stabiliser
measurement qubit

Tanner graphs provide a graphical
representation of quantum error
correction that allows us to design codes
in a way that is connectivity aware.

The Surface Code 4-Cycle

Z-type stabiliser
measurement qubit

X-type stabiliser
measurement qubit

Data qubit 1

Data
qubit 2

Stabilisers:

𝑆 = 𝑆𝑋 ∪ 𝑆𝑍 = 𝑆1 ∪ 𝑆2 = ⟨𝑍1𝑍2, 𝑋1𝑋2⟩

Both stabilisers intersect on two-qubits: they
commute!

Logical qubit count

𝑘 = 𝑛 − 𝑆 = 2 − 2 = 0

The surface code four-cycle does not encode
information!

The Surface Code

Larger surface codes can be
constructed by tiling four-
cycles together.

The Surface Code

Larger surface codes can be
constructed by tiling four-
cycles together.

The 𝒅 = 𝟑 Surface Code

Larger surface codes can be
constructed by tiling four-
cycles together.

The construction guarantees
that any two X- and Z-type
stabiliser always intersect non-
trivially on an even number of
qubits. => The stabilisers
always commute!

Surface codes: logical qubit count

This surface code has 𝑛 = 13
physical (data) qubits

For a surface patch of
any size, the number
of stabiliser generators
is 𝑆 = 𝑛 − 1.

This means all surface
codes (other than the
surface code four-
cycle) encode 𝑘 = 1
logical qubits

There are 12 auxiliary qubits
measuring 12 independent
stabiliser generators. =>
𝑟𝑎𝑛𝑘 𝒮 = 𝑆 = 12

Logical qubit count:

𝑘 = 𝑛 − 𝑆 = 1

Surface codes: error detection

X

1

1

Z1 1

Surface codes are CSS codes:
X- and Z-type errors are
detected by different
stabilisers.

Z-type stabiliser
measurement

syndrome

X-type stabiliser
measurement

syndrome

X-error Z-error

Surface codes: error detection

X

1

1

Surface codes are CSS codes:
X- and Z-type errors are
detected by different
stabilisers.

Z-type stabiliser
measurement

syndrome

X-error

Surface codes: error detection

Z1 1

Surface codes are CSS codes:
X- and Z-type errors are
detected by different
stabilisers.

X-type stabiliser
measurement

syndrome

Z-error

Surface codes: error detection

X

1

1

Z1 1

Surface codes are CSS codes:
X- and Z-type errors are
detected by different
stabilisers.

Z-type stabiliser
measurement

syndrome

X-type stabiliser
measurement

syndrome

X-error Z-error

Surface code: error
chains

1

Surface code: error
chains

X1 X

X

X 1

X-error
chain

Error chains in the bulk
have syndrome
Hamming weight 2.

Surface code: error
chains

X1 X

X

X 1

Z

Z Z 1

1

X-error
chain

Z-error
chain

Error chains in the bulk
have syndrome
Hamming weight 2.

Surface code: error
chains

X1 X

X

X 1

Z

Z Z 1

1

X-error
chain

Z-error
chain

X 1
X-type

boundary
error

Error chains in the bulk
have syndrome
Hamming weight 2.

Error chains starting at
the boundary have
syndrome Hamming
weight 1.

Surface code: error
chains

X1 X

X

X 1

Z

Z Z 1

1

X-error
chain

Z-error
chain

X 1
X-type

boundary
error

Z-type
boundary

error

Z

Z

1

Error chains in the bulk
have syndrome
Hamming weight 2.

Error chains starting at
the boundary have
syndrome Hamming
weight 1.

Zero-syndrome error
chains

1

X

If two boundary error
chains merge, we get
an undetectable zero-
weight syndrome.

1

X

Zero-syndrome error
chains

X

If two boundary error
chains merge, we get
an undetectable zero-
weight syndrome.

The highlighted error
chain is equivalent to
stabiliser 𝑆6. => It has
trivial action on the
codespace.

X

X

Logical operators

X

If two boundary error chains
merge, we get an
undetectable zero-weight
syndrome.

If boundary operators from
opposite ends of the lattice
merge, we get a non-zero
syndrome error chain that is
not in the stabiliser group.
This is a logical operator.

X

X

XX1 1

Logical operators

X

If two boundary error chains
merge, we get an
undetectable zero-weight
syndrome.

If boundary operators from
opposite ends of the lattice
merge, we get a non-zero
syndrome error chain that is
not in the stabiliser group.
This is a logical operator.

X

X

XXX

X- and Z-logical
operators

X

X-Logical operators span
from left-to-right boundary.

Z-Logical operators span
from top-to-bottom
boundary

We also see that the two
logical operator anti-
commute as they intersect
on one qubit:

𝑋𝐿, 𝑍𝐿 = 0

X

X

XXX

Z Z

Z

Z

Z

Z

Surface code
distance

X

The code distance corresponds to
the minimum-weight logical
operator.

In the surface code, these
operators are error chains that
span directly from one boundary
to another.

The distance of the surface code
is given by the size of the lattice.

This surface code is defined on a
5x5 lattice. The distance 𝑑 = 5.

X XXX

Z

Z

Z

Z

Z

Scaling the Surface Code

𝑑 = 2 Surface
code

𝑑 = 3 Surface
code

𝑑 = 5 Surface
code

The distance of surface code scales 𝑑~𝑂(𝑛),
where 𝑛 in the number of physical qubits. By
increasing the distance we can arbitrarily supress
the logical error rate.

Q: What sort of distances
will we need to supress the
logical error rate to
algorithmically useful levels
𝑝𝐿 ≈ 10−12

A: Estimates suggest 𝑑 ≈
27 will be required. This
corresponds to a surface
code patch with > 1000
physical qubits.

Over 99.9% of the qubits
in a quantum computer
will be dedicated to error
correction!

When will surface code
quantum computers be useful?

• The Google Team have implemented
surface codes on a 107 qubit chip.

• Estimates suggest operationally useful
quantum computers will require
surface codes of size 𝑑 ≈ 27 on chips
>1000 qubits.

Google’s Roadmap to Fault-Tolerance

www.informatics.ed.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

